S CYPRESS

- EMBEDDED IN TOMORROW™

PSoC 4000S Family

PSoC® 4 Architecture

Technical Reference Manual (TRM)

Document No. 002-10129 Rev. *B
May 31, 2017

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone (USA): 800.858.1810
Phone (Intnl): 408.943.2600
WWW.Cypress.com

http://www.cypress.com

o CYPRESS

Copyrights ~mg> EMBEDDED IN TOMORROW

Copyrights

© Cypress Semiconductor Corporation, 2015-2017. This document is the property of Cypress Semiconductor Corporation
and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or ref-
erenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United
States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as spe-
cifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property
rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable
license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code
form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organi-
zation, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resell-
ers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that
are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely
for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software
is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without fur-
ther notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in
this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test
the functionality and safety of any application made of this information and any resulting product. Cypress products are not
designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weap-
ons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including
resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where
the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical
component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure
of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and
hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress
products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities,
including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB,
F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more
complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respec-
tive owners.

2 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

Contents Overview

Section A:

Section B:

Section C:

Section D:

Section E:

Section F:

Glossary

Overview

1. INtrodUCtioN v
2. Getting Startedcooeiiiiiii
3. Document CoNnstruCtionccocovevvineiiiieiiiiiciee e
CPU System

4, Cortex-MO+ CPU ...
5. INEEITUPLS o e

System Resources Subsystem (SRSS)

6. 1/O SYSIEIM et
7. Clocking System ..o
8. Power Supply and Monitoringcccocoveeiiiniiiiiiiinens
9. Chip Operational Modescocoviiiiiiiiiiieeeeen
10. POWEN MOUES .oviiiiiiiieii e
11, Watchdog TIiMer ...vvie e
12, RESEl SYStEM coviiiiiiii e
13. DeVICE SECUMLY ..ot

Digital System

14. Serial Communications BlIock (SCB)ccccovvvvvviiiinninnnnns
15. Timer, Counter, and PWMoooiiiiiiiiiiceeeeeas

Analog System

16. Low-Power Comparatorccveviiiiiiiiiiiiiiiiieeeeee e
17, CaAPSENSE .ot
18. LCD Dir€Ct DIIiVE ..eueniiiiiiii e

Program and Debug

19. Program and Debug Interfacecooeiviiniiiiiiinnennn,
20. Nonvolatile Memory Programming............cccocvvevvvininnnnn.

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

&= CYPRESS

s EMBEDDED IN TOMORROW"

o CYPRESS

Contents > EMBEDDED IN TOMORROW

4 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

Section A: Overview

1.

2.

3.

Document Revision History

Introduction
1.1 Top Level Architecture...........oooveiiiiiiiieennennnnn.
1.2 FAIUIES...coiiiiiiiiiiteee e
1.3 CPU SYSIEM ..ottt
13.1 ProCeSSOr.....vuviiiiiiiiei e
1.3.2 Interrupt Controller
1.4 MEIMOIY oottt
14.1 Flash ...,
1.4.2 SRAM...ooiiti e
1.5 System-Wide ReSOUrCescoeuvvvviieeeenenann.
15.1 Clocking System
15.2 Power System ...,
153 GPIO it
1.6 Fixed-Function Digitalccoccviiiiieeeiinennnnnnn.
1.6.1 Timer/Counter/PWM Block
1.6.2 Serial Communication Blocks
1.7 Analog SYStem......cccuiiiiiiiieieeeee e
1.7.1 Low-Power Comparators
1.8 Special Function Peripherals
1.8.1 LCD Segment Drive
1.8.2 CapSense ...,
1.9 Program and Debugcccoiiiiiiiiiniien,
1.10 Device Feature SUMMArYccccoccvveeeeiniineeeeanns
Getting Started
2.1 SUPPOIT ettt
2.2 Product Upgrades..........cccceeeevivviieeeeneiinininnnnnnn,
2.3 Development KitS...........cceeeveveieieieeeee,
2.4 Application NOteS.......ccceeveeeeeeeieiiiieeeeeeve,
Document Construction
3.1 Major SECHONS ...cceeeeeeieeciiiieer e
3.2 Documentation Conventions
3.2.1 Register Conventions
3.2.2 Numeric Naming
3.2.3 Units of Measure
3.24 ACTONYMScoieeiiiiieeeeeee e

Section B: CPU System

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

Top Level Architecture

& CYPRESS

s EMBEDDED IN TOMORROW"

Contents

o CYPRESS

EMBEDDED IN TOMORROW

-

4. Cortex-M0+ CPU 27
4.1 FEALUIES ...ttt oo oo e e et ettt e ettt te bt b be oo e o e oo e e e e e e e e ee ettt ee et eeatnnnbnnnn e rn e s 27
o =1 (o Tod QB 1= To [= o I PP T TR UPRPT 28
4.3 HOW IEWVOIKS ..ttt ettt e e e e e e e e e bbb ettt e e e e e e e e e e s e annbebbeeaaaaeaeas 28
N Vo [0 [£ ST IS o R TR UPRPT 28
I (1o 1] (= £ U UU PR PPUPRPT 29
o I @ o T=T = 11 o To 1Y (oo [= 2T T TP UPRPT 30
o A 1 1 10 Tox 1o IR ST TP UPRTT 30

4.7.1 AdAress AlIGNMENT ...t e e e e e e e e e e e e e e e e e aannnes 31
4.7.2 MEMOIY ENAIANNESS ...ccoiiiiiiiiiiiiite ettt e e e e e e e e e e e e e e e aaaes 31
Y3 (o3 T N 1 41 SO PP TR UPRTT 31
e T B T o 11 o [P UP TP UPRTT 31

5. Interrupts 33
L R e LU (=1 OO TP P PP PP PPRPPTPPTI 33
5.2 HOW TEWOIKS .ttt e e et e e e s ettt e e e e nb e e e e s e nnbeee e e nnes 33
5.3 Interrupts and EXCEPLIONS - OPEIAtiION........uviiiieeieeeiiiiiiiiiiiiieerreee e e e e e s s s s rerreeeaeeeeseannnnnnes 34

5.3.1 Interrupt/EXception HandliNgoeeeririeroiis e e e e e e e 34

5.3.2 Level and PUISE INTEITUPLSuviiiiiiiiieiee e e ee s et e e e e e s e e s s e e e e e e e e e e s ennnnes 34

5.3.3 EXCeption VECIOr TADIEccci i e e e e e 35

Lo o= o[0T TS0 10 (o= PR 35
5.4.1 TS A (o= o] 1o o S ESERER 35

5.4.2 Non-Maskable Interrupt (NMI) EXCEPLIONvvvviiiiiiiiiieeeeie et e e e e 36

5.4.3 HardFault EXCEPLIONvvvii i e e e r e e e e e e e e s st ee e e e e e e e e e ennnnnns 36

5.4.4 Supervisor Call (SVCall) EXCEPLIONcvvvviieeeeeeiic ettt eee e e e e er e aee e 36

5.4.5 = a0 KRV b CeT= o) 1o) o 1 SSERRRR 36

5.4.6 VAT o3 1 o= 1o] o OO 37

L T [01 (=T ¢ £ BT o] S Yo 1H] o= SRR 37
LN T o7 =T o [0 I = o 1 Y75 PR 37
5.7 Enabling and Disabling INtEITUPLS.........cooiiiiiiiiieiir e e e s e e e e e e e e e e e e 38
LS T o= o[0T IS €= L= PP 38
5.8.1 Pending EXCEPLIONSccviiii it e e e e e e e e e e e e e e e e e 38

5.9 Stack Usage for EXCEPLIONSccuiiiieeeiii ittt e e e e e s s ss st e e e e e e e e e e s s e s sneatreneeeeeeeeeeeaenannns 39
5.10 Interrupts and LOW-POWET MOOES..........ccccuuriiiiiiiieeee e e i e s eecsieeeeer e e e e e e s e e s s seeeeeeeeeeesesanannes 39
5.11 Exceptions — Initialization and Configuration............ccccccoeeeeeeeiiiiie e e ee e 40
L0 7 = To 1) (=] PPN 40
5.13 ASSOCIAtEA DOCUMENTSuuiiiiiiiiiiiiee e ettt e e e e e e e et b bt e e et e e e e e e s s e s sbbbbeeareeeeaaeeeaaesanns 40
Section C: System Resources Subsystem (SRSS) 41
TOP LEVEI AFCRITECIUIE ...ttt e ettt e e e e bbb e e e e et e e e e nnes 42

6. 1/0O System 43
B.1 FBAIUIES ..ttt e e e e et e e e ettt et e et be b e b a b a e a e e e e e e e e e e e aaaaaaas 43
6.2 GPIO INtErfACE OVEIVIEW.....eeiiiiiiiiei ittt ettt e e e e e e e e e et eae e e e e e e e e e e e e annnreeeeas 43
6.3 /O Cell ArCRILECIUIE ...ttt e e e e e e e e et e e e e e e e e e e e e aanneaeeeas 44

6.3.1 Digital INPUE BUFFET ...t e e 45
6.3.2 Digital OULPUL DIIVET ...eeeeiiiieeeeiie ettt e e eee e e e e e e e as 45
6.4 HIgh-SPEEA I/O MALIIXeeeeieiiieieie ittt ettt et e e e e e e e s e sttt a e e e e e e e e e e e e e snnnbeneees 48
S 0= 1 1@ TP 48
6.5.1 OVBIVIBW ...ttt ettt oottt ettt e e e e e e e e s e e bbbttt e e e e e e aaaeeassannnbbbbeeeeaaaeans 48
6.5.2 BIOCK COMPONENTS.....ciiiiiieeiiii ittt ettt e e e e e e e s e bbb e eeeeeaaaeaeaaaaanns 49
6.5.3 o101 1] o [P TPTPPPRPUPPR 56
6.5.4 (@] 1= = 1110] o H PP TR PPUPPTPPPPP 56

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

6.6 1/O State ON POWET UP . ..oiiiiiiiiiiiiii ittt
6.7 Behavior in LOW-POWEr MOUESooiiiiiiiiiiie ittt
6.8 INTEITUPL ..ot e e e e
6.9 Peripheral CONNECLIONSocviiiiiiiiiiie et
6.9.1 Firmware Controlled GPIO..........coioiiiiiiieiiiiee e
6.9.2 ANAIOG 1O .
6.9.3 LCD DIV oeeieeeee ettt ettt a e e e e e e s et en e e e e e e e e e e nnenes
6.9.4 CAPSENSE ...
6.9.5 Serial Communication BIOCK (SCB)ccccoviiiiieiiiiiiee e,
6.9.6 Timer, Counter, and Pulse Width Modulator (TCPWM) Block
B.10 REOISIEIS. . eiiiei ettt
7. Clocking System
% R =1 (o Tod 1@ DI T= To =y o HO TP TSRO
7.2 ClOCK SOUICES. ..ot ittt e e e e e e e e e e e e eanb e beeeeeeas
7.2.1 Internal Main OSCIllatoruuiiiiiiiiiaiee e
7.2.2 Internal Low-speed OSCillatorciiiiiiiiiiiiiiiiiieeieeeee e
7.2.3 External Clock (EXTCLK) ...cooiiiiiiiiiieieeeee et
7.2.4 Watch Crystal Oscillator (WCO).......cooiuiiiiiiiiieeieeeeee e
7.3 ClOCK DiIStIDULION ...ttt e e e e e e e
7.3.1 HFCLK INpUt SEIECHION ..o
7.3.2 LFCLK INPUL SEIECHIONeeiieiiiiiiiiieeeee e
7.3.3 SYSCLK Prescaler Configurationccccceeeiiniiiiiiiiiiieeieeee e
7.3.4 Peripheral Clock Divider Configurationccccccceeeiiiiiiiiiiiiiienneen.
7.4 Low-Power Mode OPErationoooiiiuuuiiiiiiie it
7.5 REQISIEE LIST..eiiiiiiiiiiiie et e e e e e e e e e e eeaeas
8. Power Supply and Monitoring
S0 N =1 o o3 1q DI Vo - o o S
8.2 POWEr SUPPIY SCENAIIOS....civiiiieeeeiiiiicitiiiiee it et e e e e s e s se st e e e e e e e e e e s e s nnrnnnereeees
8.2.1 Single 1.8 V t0 5.5 V Unregulated SUpply.........cccovviviiieiieeeeeeeiniicnnns
8.2.2 Direct 1.71 V to 1.89 V Regulated SUPPIYovvvveereeeeeiiiiiiiiiiiiieeeeen,
8.3 HOW IEWOIKS .ot
8.3.1 RegUIAtOr SUMMAIY ..cccviiiee i e e
S0 V01 7=V [=38 1Y [o) 71 (o 1 o [
8.4.1 Power-On-Reset (POR)cccooiiii e
S TR T =T £ 1= I P
9. Chip Operational Modes
1S 200 R =0T | PP
LS T U L PRSPPI
9.3 PIIVIIEOEA ...
LS B 1= o 11 o TP PUPPPPPN
10. Power Modes
10.1 ACHVE MOAE ...ttt e et e e e e e e e e et e baeeeeeas
10.2 SIEEP MOUE.ttt e e e e e e e e e e a e
10.3 DEEP-SIEEP MOUEeeiiiiiiiiaee ettt e e e e e e e reeeaaae s
10.4 POWET MOUE SUMMANY ...eeiiiiiiiiiae ettt ee e e e e e e e e et ee e e e e e e e e e e e e s e annbbsbeeeeeeas
10.5 Low-Power Mode Entry and EXituueeiiiiiiiiiiiiiiiiieeeee e
10.6 REQISIEI LISt ..ottt et e e e e e e e e e e e e eeeeas

11. Watchdog Timer

I R T T ([(=S

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

Contents

Contents

o CYPRESS

EMBEDDED IN TOMORROW

-
I =] o Tod [B - To | = o [PO P PP PPPPPPPPRPN 79
11,3 HOW IEWOTKS ...ttt sttt e e ra bt e e e e skt bt e e e e s bbb e e e e e sbbeeeeenae 79
11.31 Enabling and DisSabling WDTccoiiiiiiiiiiiiiiee et 80
11.3.2 WDT Interrupts and LOW-POWEr MOUES.........c.ocuuiiiiiiiiiiiiiee e 81
11.3.3 WDT RESEE MOUE ..ottt et ee e s 81
11,4 AAAItIONAI TIMEIS ..ottt e et e e e s et e e e e e s st e e e e e s sabbe e e e e asbbeeeeenae 82
114.1 WDTO @NA WDTL ..ottt e ettt e e e rab e e e s e snbreeeeean 82
11.4.2 WD 2 ettt ettt ettt e ekt e e e bbbt e e e e b et e e e e aa b bt e e e et b e e e e e anrneee e 83
11.4.3 1022 1S Tor- To [0 o [RR TR PP PTP R PPP PR 83
N R L=) (=T gl] PO POPPPRPPPPPRRN 83
12. Reset System 85
12,1 RESEE SOUICESttt ittt e e e e e e s e e et et e e e e e e s s a e et e e te e e e e e s s s snrreneeees 85
12.1.1 POWEI-0N RESEL.....oiiiiiiiiiiiiiii e 85
12.1.2 BIOWNOUL RESELeiiiiiiiiiiiii e 85
12.1.3 WALChAOG RESEL ..ot e e e e e e e e e 85
12.1.4 Software INItIAted RESEL.........ooiiiiiiiiii e 85
12.1.5 EXIEINAI RESEL ...t 86
12.1.6 Protection FAUIt RESEL.........coiiiiiiiiie et 86
12.2 1dentifying RESEL SOUICES.....ccuiii ittt e e et e e e e e e e e e e e e annbaeeeas 86
G B S =T [(=] ol N) S PP P UR TR 86
13. Device Security 87
R T o (U] =T OO PPRPRR 87
13.2 HOW IEWOTKS ...ttt ettt e s e s nnn e e e e e nne e nnneena 87
13.2.1 DY oI =T ol U] PP 87
13.2.2 [P2 TS TS U O EPEEER 88
Section D: Digital System 89
TOP LEVEI AFCRITECIUIE ..ttt e ettt e e e e bbb e e e e abe e e e e nnees 89
14. Serial Communications Block (SCB) 91
141 FRALUIES .eeeiiiie ittt e e e s s et e e et e e e e e et e s e e e e e e e e e 91
14.2 Serial Peripheral INterface (SPI)...... . i 91
14.2.1 FRALUIES ...t e e 91
14.2.2 GENEral DESCIIPHION ...ttt ettt e e e e e e e e e e e e aee e 92
14.2.3 SPI M0odes Of OPEIrationccuiiiiiiiiiiiie e 93
14.2.4 Using SP1 Master t0 CIOCK SIAVE..........cooiiiiiiiiiiiiiieee e 97
14.2.5 BASY SPI PIOtOCOL.ceiiiiiiieiiiee ettt e e e e e 97
14.2.6 SP REGISIEIS ... cieiiiiei ettt e e e e e e e bbbt e e e e e e e e e e s aneeaae e 99
14.2.7 SPIINTEITUPTS ... ettt ettt et te bbb a s e e e e e e e e e e aeaaaaeeeeeees 100
14.2.8 Enabling and INItializing SPIueiiiii e 100
14.2.9 Internally and Externally Clocked SPI OperationsS.........ccccooovviiiiiiiiiiiieeeiieeeeeeennn 102
I T U N LT PP OO URP PP 105
14.3.1 FRALUIES ... e 105
14.3.2 GENEral DESCIIPLION ...ttt e e e e e e e e e e eeeeas 105
14.3.3 UART MoOdeS Of OPEIatioNcooiiiiiiiiieiieeie ettt a e e 105
14.3.4 UART REOISIEIS ...ttt e e e e e e e e e et reeeeaaaens 112
14.3.5 UART INEEITUPES ...ttt a e e e e e e e 113
14.3.6 Enabling and INitializing UARTueiiiiiiee e 113
14.4 Inter Integrated CirCUIL (I2C)ooi ittt e e e e e e e e s enare e 115
14.4.1 FRALUIES ... e 115
14.4.2 GENEIal DESCIIPIION ...ttt et e e e e e e e e e e aaee e e e 115
14.4.3 Terms and DefiNitioNScooiiiiiiie e 116

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

14.4.4 12C Modes Of OPeration..........ccueeveiiiiiieiiiiiiiiee e
14.4.5 Easy 12C (EZI2C) ProtoCol........c..ceveiiiiiiiieiiiiiicie e
14.4.6 [2C REQISLEIS ..ttt e e
14.4.7 [2C INEEITUPLS ...t
14.4.8 Enabling and Initializing the 12C...........ccccoiiii e,
14.4.9 Internal and External Clock Operation in 12C..........cccccocvieeeene
14.4.10 Wake up from SIEEP ...uvvieiiiiiiieee e
14.4.11 Master Mode Transfer EXamples..........ccccoviiiieiiiiiicienniieeenn
14.4.12 Slave Mode Transfer Examples..........ccccoviiiiiiiiiiiieeee
14.4.13 EZ Slave Mode Transfer Examplecccoooiiiiiiiiiieeeene
14.4.14 Multi-Master Mode Transfer Example.......ccccccoviiieeiiiiiieecenns
15. Timer, Counter, and PWM
I5.1 FRAUIMES...cciiiiii ittt
15.2 BlOCK DIBQIAM ...ttt ettt e e e e e e e e e s eane e
15.2.1 Enabling and Disabling Counter in TCPWM Block
15.2.2 ClOCKING .ttt
15.2.3 Events Based on Trigger INPULS..........eeeiiiiiiiiiiiiiiiiiiieeee e,
15.2.4 OULPUL SIGNAIS ...t
15.2.5 POWEN MOUEScoieiiiiiiie ettt
15.3 MOdES Of OPEIALIONveiiiiiiieeeiiiiiite et
15.3.1 TIMEr MOAE ...
15.3.2 Capture MOUE ...
15.3.3 Quadrature Decoder Modeouvviiiiiiiieiiieeeeeeeeeeeeeeeeeeeainas
15.3.4 Pulse Width Modulation Modecccoooviiiiiieiiiiiiiee e
15.3.5 Pulse Width Modulation with Dead Time Modec........
15.3.6 Pulse Width Modulation Pseudo-Random Mode
154 TCPWM REQISIEIS ...eeiiiiiiie ettt ettt a e e e e

Section E: Analog System

TOp LeVEl ArChiItECIUIEcovve e

16. Low-Power Comparator

L16.1 FRAIUIMES...coiiiiii ittt e e e e e s
16.2 BIOCK DIQramccoiiiiiiieiaiiiiiiee ettt e s e e e
16.3 HOW IEWOIKS ...ttt
16.3.1 INPUt CoNFIQUIALION......civiiiiieiiiiiice e
16.3.2 Output and Interrupt Configurationccccooeieeeennniieeeeenn
16.3.3 Power Mode and Speed Configurationccccoevveeeeriinnnnen.
16.3.4 HYSIEIESIS ..
16.3.5 Wakeup from Low-Power MOAES.........cccoviiiieeiiiiiieeeniiiieeeene
16.3.6 Comparator CIOCKcoceiiiiiiiieiiiieee e
16.3.7 OFfSEE THIM 1o
16.4 REQISIEr SUMMAIYtiiiiiiiiiiiiee et ee ettt e st e e e st e e e s snbreeeeeaes
17. CapSense
L17.1 FRAMUIMES...cciiiiii ittt e e
i = o Tot QB = o = 1 U UPPTT RO
17.3 HOW IEWOIKS ...ttt e e
17.3.1 GPIO Cell..iiiiee e
17.3.2 ANAIOG MUX BUS ...cciiiiiiiiiiiiiiie et
17.3.3 CapSense Delta Sigma Modulator.............cccccceeiiiiiiiiiiiiinenen.
17.34 Shielding and Initialization blOCKccccciiiiiiniiiiiiiiieee,
17.3.5 Digital SEQUENCENciiiiiiiiiii it

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

Contents

o CYPRESS

Contents ~mg> EMBEDDED IN TOMORROW
17.3.6 ClOCK GENETALIONcciiiiiiiie ettt e e e s ebaneeeeen 184

17.4 General-PUrpOSE RESOUICESuuiiiiiiiiiiie ettt ettt e e e e e eninneee s 186

17.5 REGISTEE LISt iutieeiieiiiiiiie ettt ettt ettt ettt e e st e et e e st e e e snnbn e e e snane e e s 186

18. LCD Direct Drive 187
L18.1 FRALUIES .oeiiiiiee et e et et e e e e e e s e st r e e e e e 187

18.2 LCD SegmMeENt DIVE OVEIVIEW.uuueeiiiiiiaieaaeie ittt e e e e e e e e e s s e aibaebeeeeeeaaaaeeeeaeaannenbbeeeees 187
18.2.1 DIIVE MOAES ...ttt e et e e an s 188

18.2.2 Recommended Usage Of Drive MOAES..........ccoiiiiiiiiiiiiiiieiie e 196

18.2.3 Digital Contrast CONLIOL..........cooi i 196

R G T = (0T QB 1 =T [= o [PP PRTTUR R 197
18.3.1 HOW T WOTKS.....ceee ettt 197

18.3.2 High-Speed and Low-Speed Master GEeNerators.........ccccceeeeeeiiiiiiivieiieeeneaaaeeeenn 197

18.3.3 Multiplexer and LCD Pin LOGICuueeeieiiaaaiiaiiiiiiiiiieeee e e e e e e e 198

18.3.4 Display Data REQISIEIScoiiiiiiiee e a e e 198

18.4 REQISIEI LISt .ttt ettt et e e e e e e e e s e e s bbb e et e e e e e e e e e e e e abbnbreeeaeas 198
Section F: Program and Debug 199
JLIo] o YL AN o o) (=T o1 0 PSSR 199

19. Program and Debug Interface 201
FO.1 FRALUIES ..eeiieiee ettt e e e oot e et e e e e e e e e e e e e et e e e e e e e 201

19.2 FUNCHONAI DESCIIPLION ...ceiiitiiieee ittt ettt e st e e s bt e e e e ananne e s 201

19.3 Serial Wire Debug (SWD) INTEIACE.uiiiiiiiiiie e 202
19.3.1 SWD TiMING DELAIIS......ceiiiiiiiiiiei i 203

19.3.2 ACK DEIAIIS ...eeeiieieeee ettt et bbb e e 203

19.3.3 Turnaround (Trn) Period DetailScooiuiiiiiiiiiiiieeiiec e 203

19.4 Cortex-MO+ Debug and AcCCeSS POrt (DAP)coiiiiiiiiiie ittt 204
1941 Debug Port (DP) REQISTEIS ...ttt 204

19.4.2 ACCESS POrt (AP) REQISLEISeiiiiiiiiiiiiiie ettt 204

19.5 Programming the PSOC 4 DEVICE......cccoiiuiiiiie ittt 205
1951 SWD POt ACQUISTTION ...ceieiiiiiiiies ittt ettt e e e e eee e 205

19.5.2 SWD Programming Mode ENtIYcocueieeiiiiiiieeeiieeee e 205

19.5.3 SWD Programming Routines EXECULIONSccoiiiiiiiiiiiiiiiie e 205

19.6 PSOC 4 SWD Debug INTEIACEoeviiiiiiiiiie e 206
19.6.1 Debug Control and Configuration REQISTErScoocuiiiiiiiiiiiieiiice e 206

19.6.2 Breakpoint Unit (BPU)cooiiiiiiiieiiiiee ettt 206

19.6.3 Data WatChPOiNt (DWT)eeeiiiiiiiie ettt 206

19.6.4 Debugging the PSOC 4 DEVICEciciiiiiiieiiiiee ettt 206

RS A L= |1 (=] £ SO PP PRTPUPPPPP 207

20. Nonvolatile Memory Programming 209
20,1 FRAIUIMESutiieiiiiiiiie ettt e e e e e e e s e st e et e e e e e e s e e e e r e s 209

20.2 FUNCLIONAI DESCHPLIONttttiiitieeee ettt ettt et e e e e e e e e e e e bbb aeeeeeaaaaaeeeeaanannes 209

20.3 System Call IMPIEMENTALION.........ccii ittt e e e e e e e e e s e anneeees 210

20.4 Blocking and Non-Blocking System CallS............coooaiiiiiiiiiiieeeee e 210
20.4.1 Performing @ SYsStem Call..........oooiiiiiiiiie e 210

20.5 SYSEEIM CaAllS....coiiiiiiiiiiiie ettt e et e ettt e e e e e e e e bbb e e et e e aaa e e e e e annaae 211
20.5.1 SHICON ID et e s e e e ra e e e e s sbne e e e e 211

20.5.2 CONFIGUIE CIOCK ...ttt e e e 212

20.5.3 LOBA FIASH BYLES ...ttt e e e e e e e e e as 212

20.5.4 WWITEE ROW ...ttt et e e st e e s e e e s e es 213

20.5.5 PrOGram ROW.........uueiiiiiei et e e e e e e e e e e e e e e e aeseeenb e s 214

20.5.6 ErASE All ... 214

10 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

o CYPRESS

e~ EMBEDDED IN TOMORROW Contents

20.5.7 CRECKSUIM ...ttt e et e e e st e e e e s sabbeeeeeaees 215

20.5.8 WIILE PTOTECHION ...eeiiiiiiiiiiie et 216

20.5.9 NON-BIOCKING WIILE ROWciiiiiiiiiiie ittt 217

20.5.10 NON-BIOCKING Program ROW............ccuiuuuiiieiiiiiiiiesiiiieee e sireeeessinreee e sinneeeeseeees 217

20.5.11 Resume NON-BIOCKINGcuiiiiiiiiiiieiii e 218

20.6 SYSEM Call STALUS ...ooiieeiiiieiiiite ettt e r et e e s et e e e e abb e e e e et r e e e senneas 219

20.7 Non-Blocking System Call PSEUO COEcooiuiiiiiiiiiiiiee et 220

Glossary 223

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 11

o CYPRESS

Contents > EMBEDDED IN TOMORROW

12 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

Section A: Overview

A
e

CYPRESS

EMBEDDED IN TOMORROW™

This section encompasses the following chapters:
m Introduction chapter on page 15

m Getting Started chapter on page 19
m Document Construction chapter on page 21

Document Revision History

Revision Issue Date Ocrlg:ng Description of Change
*x December 02, 2015 DCHE Initial version of PSoC 4000S TRM
*A May 11, 2016 DCHE Initial public release of the PSoC 4000S TRM
*B May 31, 2017 SHEA Updated logo and copyright information

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

13

14

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

1. Introduction

&= CYPRESS

s EMBEDDED IN TOMORROW"

PSoC®4 is a programmable embedded system controller with an ARM® Cortex®-M0+ CPU. PSoC 4000S is an enhanced
version of the PSoC 4000 family and is upward-compatible with larger members of PSoC 4.

PSoC 4 devices have these characteristics:

High-performance, 32-bit single-cycle Cortex-M0+ CPU core

High-performance analog system

Self and Mutual Capacitive touch sensing (CapSense®)

Configurable Timer/Counter/PWM block

Configurable communication block with 12C, SPI, and UART operating modes

Low-power operating modes — Sleep and Deep-Sleep

This document describes each functional block of the PSoC 4000S device in detail. This information will help designers to
create system-level designs.

1.1 Top Level Architecture

Figure 1-1 shows the major components of the PSoC 4000S architecture.

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 15

o CYPRESS

Introduction ~mmp> EMBEDDED IN TOMORROW
Figure 1-1. PSoC 4000S Family Block Diagram
CPU Subsystem
PSoC 4000S
Architecture SWDITC, MTB SPCIE
Cl\agix FLASH SRAM ROM
32-bit
48 MHz 32 KB 4 KB 8 KB
AHB-Lite NVICF;??%FMYJL;(LMPU Read Accelerator SRAM Controller ROM Controller
System Resources iI iI iI
Lite | System Interconnect (Single Layer AHB) |
. R
P
Sleer;)\gggtrol Perlpherals ii
o w||c T N Peripheral Interconnect (MMIO)
PWRSYS
Clock Control E —
WDT < 9
ILO_| MO — = -) <
g = 2| |z gl o
Reset
2 5 (8] (2| |5 |o| |G
) ~ =] O = -
Test g '-f>§ o 8 5
i Q %
@ % %% |J] ™ T =
0 vy
J
; A 4 v A v A
High Speed I/O Matrix and 2x Smart I/O]
Power Modes t
[Active/Sleep | | 36X GPIOs]
l DeepSleep |
10 Subsystem
1.2 Features 1.3 CPU System
The PSoC 4000S family has these major components:
. L . . 13.1 Processor
m 32-bit Cortex-M0+ CPU with single-cycle multiply, deliv-
ering up to 0.9 DMIPS/MHz The heart of the PSoC 4 is a 32-bit Cortex-M0+ CPU core
m Upto 32 KB flash and 4 KB SRAM running up to 48_MHz_ for PSoC_ 4000S. It is optimized for
m Five center-aligned pulse-width modulator (PWM) with Io_w-_power eperatlon with extensive clock gating. It uses 16-
bit instructions and executes a subset of the Thumb-2
complementary, dead-band programmable outputs . . g . -
instruction set. This instruction set enables fully compatible
m Two low-power comparators binary upward migration of the code to higher performance
m Two serial communication blocks (SCB) that can work as processors such as Cortex M3 and M4.
SPI, UART, I2C, and local interconnect network (LIN) . . .
slave serial communication channels The C_PU has a hardware multiplier that provides a 32-bit
i) - result in one cycle.
m A Smart I/O block, which provides the ability to perform
Boolean functions in the I/O signal path 1.3.2 Interrupt Controller
m CapSense
m Segment LCD direct drive The CPU subsystem incluc_ies a nested vectored interrupt
. . controller (NVIC) with 16 interrupt inputs and a wakeup
m Low-power operating modes: Sleep and Deep-Sleep interrupt controller (WIC), which can wake the processor
m Programming and debugging system through serial wire from Deep-Sleep mode.
debug (SWD)
m Fully supported by PSoC Creator™ IDE tool
16 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

14 Memory

The PSoC 4 memory subsystem consists of flash and
SRAM. A supervisory ROM, containing boot and configura-
tion routines, is also present.

141 Flash

The PSoC 4 has a flash module, with a flash accelerator
tightly coupled to the CPU, to improve average access times
from the flash block. The flash accelerator delivers
85 percent of single-cycle SRAM access performance on an
average.

1.4.2 SRAM
The PSoC 4 provides SRAM, which is retained in all power
modes of the device.

15 System-Wide Resources

151

The clocking system consists of the internal main oscillator
(IMO) and internal low-speed oscillator (ILO) as internal
clocks and has provision for an external clock and watch
crystal oscillator (WCO).

Clocking System

The IMO with an accuracy of +2 percent is the primary
source of internal clocking in the device. The default IMO
frequency is 24 MHz and can be adjusted between 24 MHz
and 48 MHz in steps of 4 MHz. Multiple clock derivatives are
generated from the main clock frequency to meet various
application needs.

The ILO is a low-power, less accurate oscillator and is used
as a source for LFCLK, to generate clocks for peripheral
operation in Deep-Sleep mode. Its clock frequency is
40 kHz with £60 percent accuracy.

An external clock source ranging from 1 MHz to 48 MHz can
be used to generate the clock derivatives for the functional
blocks instead of the IMO.

The WCO is a 32-kHz watch crystal oscillator. It is used to
dynamically trim the IMO to an accuracy of +1 percent to
enable precision timing applications.

152

The device operates with a single external supply in the
range 1.71V to 5.5V. It provides multiple power supply
domains — Vppp to power digital section, and Vppa for noise
isolation of analog section. Vppp and Vppa should be
shorted externally.

Power System

The device has two low-power modes — Sleep and Deep-
Sleep — in addition to the default Active mode. In Active
mode, the CPU runs with all the logic powered. In Sleep
mode, the CPU is powered off with all other peripherals

Introduction

functional. In Deep-Sleep mode, the CPU, SRAM, and high-
speed logic are in retention; the main system clock is OFF
while the low-frequency clock is ON and the low-frequency
peripherals are in operation.

Multiple internal regulators are available in the system to
support power supply schemes in different power modes.

1.5.3 GPIO

Every GPIO has the following characteristics:
Eight drive strength modes

Individual control of input and output disables
Hold mode for latching previous state
Selectable slew rates

Interrupt generation — edge triggered

n addition, the device has two Smart I/O blocks that pro-
vides the ability to perform Boolean functions on the port I/
Os. The Smart I/O block is available in all device power
modes, including low-power modes.

The pins are organized in a port that is 8-bit wide. A high-
speed I/0O matrix is used to multiplex between various sig-
nals that may connect to an 1/O pin. Pin locations for fixed-
function peripherals are also fixed.

1.6 Fixed-Function Digital

16.1 Timer/Counter/PWM Block

The Timer/Counter/PWM block consists of five 16-bit coun-
ter with user-programmable period length. The TCPWM
block has a capture register, period register, and compare
register. The block supports complementary, dead-band pro-
grammable outputs. It also has a kill input to force outputs to
a predetermined state. Other features of the block include
center-aligned PWM, clock prescaling, pseudo random
PWM, and quadrature decoding.

1.6.2

The device has two SCBs. Each SCB can implement a
serial communication interface as 12C, UART, local intercon-
nect network (LIN) slave, or SPI.

Serial Communication Blocks

The features of each SCB include:
m Standard 12C multi-master and slave function

m Standard SPI master and slave function with Motorola,
Texas Instruments, and National (MicroWire) mode

m Standard UART transmitter and receiver function with
SmartCard reader (ISO7816), IrDA protocol, and LIN

m Standard LIN slave with LIN v1.3 and LIN v2.1/2.2 spec-
ification compliance

m EZ function mode support with 32-byte buffer

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 17

Introduction

1.7
1.7.1

The PSoC 4 has a pair of low-power comparators, which
can operate in all device power modes. This functionality
allows the CPU and other system blocks to be disabled
while retaining the ability to monitor external voltage levels
during low-power modes. Two input voltages can both come
from pins, or one from an internal signal through the AMUX-
BUS.

1.8
181

The PSoC 4 has an LCD controller, which can drive up to
eight commons and every GPIO can be configured to drive
common or segment. It uses full digital methods (digital cor-
relation and PWM) to drive the LCD segments, and does not
require generation of internal LCD voltages.

Analog System

Low-Power Comparators

Special Function Peripherals

LCD Segment Drive

1.8.2

PSoC 4000S devices support fourth generation CapSense,
which has the following features:

m Self-capacitance and mutual-capacitance-based touch
sensing

CapSense

m Robust CapSense Sigma Delta (CSD) and CapSense
Crosspoint (CSX) sensing technologies that provide

1.10 Device Feature Summary
Table 1-1 shows the PSoC 4000S device summary.

Table 1-1. PSoC 4000S Device Summary

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

best-in class SNR for self-capacitance and mutual-
capacitance-based touch sensing respectively

m Allows reconfiguring the CapSense block as an ADC
and supports ADC input on any GPIO pin

m Superior SNR with programmable voltage reference
(VREF)

m Supports spread spectrum and programmable resis-
tance switches for lower electromagnetic interference
(EMI)

m Reduced overhead on CPU during scanning by offload-
ing initialization and configuration process to the
CapSense sequencer

m Liquid tolerant CapSense operation using driven shield
signal

m Capacitive touch sensing and shielding on all GPIO pins

18.2.1

The CapSense block has two IDACs and a comparator with
an adjustable reference, which can be used for general pur-
poses, if CapSense is not used.

IDACs and Comparator

1.9 Program and Debug

PSoC 4 devices support programming and debugging fea-
tures of the device via the on-chip SWD interface. The PSoC
Creator IDE provides fully integrated programming and
debugging support. The SWD interface is also fully compati-
ble with industry standard third-party tools.

Feature PSoC 4000S
Maximum CPU Frequency 48 MHz
Flash 32 KB
SRAM 4 KB
GPIOs (max) 36
Smart I/0 2 Ports
CapSense Available
LCD Driver Available
Timer, Counter, PWM (TCPWM) 5
Serial Communication Block (SCB) 2
IDAC (part of CapSense) 2
Low-Power Comparator (LPCOMP) 2
Watch Crystal Oscillator (WCO) Available
Power Modes Active, Sleep, and Deep-Sleep

18 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

2. Getting Started

&= CYPRESS

s EMBEDDED IN TOMORROW"

2.1 Support

Free support for PSoC® 4 products is available online at www.cypress.com/psoc4. Resources include training seminars,
discussion forums, application notes, PSoC consultants, CRM technical support email, knowledge base, and application
support engineers.

For application assistance, visit www.cypress.com/support/ or call 1-800-541-4736.

2.2 Product Upgrades

Cypress provides scheduled upgrades and version enhancements for PSoC Creator free of charge. Upgrades are available
from your distributor on DVD-ROM; you can also download them directly from www.cypress.com/psoccreator. Critical updates
to system documentation are also provided in the Documentation section.

2.3 Development Kits

The Cypress Online Store contains development kits, C compilers, and the accessories you need to successfully develop
PSoC projects. Visit the Cypress Online Store website at www.cypress.com/cypress-store. Under Products, click Program-
mable System-on-Chip to view a list of available items. Development kits are also available from Digi-Key, Avnet, Arrow, and
Future.

2.4 Application Notes

Refer to application note AN79953 - Getting Started with PSoC 4 for additional information on PSoC 4 device capabilities and
to quickly create a simple PSoC application using PSoC Creator and PSoC 4 development kits.

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 19

http://www.cypress.com/support/
http://www.cypress.com/psoccreator
http://www.cypress.com/psoc4
http://www.cypress.com/cypress-store
http://www.cypress.com/?rID=78695

o CYPRESS

Getting Started > EMBEDDED IN TOMORROW

20 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

3. Document Construction

& CYPRESS

s EMBEDDED IN TOMORROW"

This document includes the following sections:

m Section B: CPU System on page 25

Section C: System Resources Subsystem (SRSS) on page 41
Section D: Digital System on page 89

Section E: Analog System on page 159

Section F: Program and Debug on page 199

3.1 Major Sections

For ease of use, information is organized into sections and chapters that are divided according to device functionality.

m Section — Presents the top-level architecture, how to get started, and conventions and overview information of the prod-
uct.

m Chapter — Presents the chapters specific to an individual aspect of the section topic. These are the detailed implementa-
tion and use information for some aspect of the integrated circuit.

m Glossary — Defines the specialized terminology used in this technical reference manual (TRM). Glossary terms are pre-
sented in bold, italic font throughout.

m Registers Technical Reference Manual — Supplies all device register details summarized in the technical reference man-
ual. This is an additional document.

3.2 Documentation Conventions

This document uses only four distinguishing font types, besides those found in the headings.

m The first is the use of italics when referencing a document title or file name.

m The second is the use of bold italics when referencing a term described in the Glossary of this document.
m The third is the use of Times New Roman font, distinguishing equation examples.

m The fourth is the use of Courier New font, distinguishing code examples.

3.2.1 Register Conventions
Register conventions are detailed in the PSoC 4000S Family: PSoC 4 Registers TRM.

3.2.2 Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or
‘3Ah’) and hexadecimal numbers may also be represented by a ‘Ox’ prefix, the C coding convention. Binary numbers have an
appended lowercase ‘b’ (for example, 01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’ or ‘b’ are decimal.

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 21

Document Construction

3.2.3

Units of Measure

This table lists the units of measure used in this document.

Table 3-1. Units of Measure

o CYPRESS

EMBEDDED IN TOMORROW

Abbreviation

Unit of Measure

bps bits per second

°C degrees Celsius

dB decibels

fF femtofarads

Hz Hertz

k kilo, 1000

K kilo, 2710

KB 1024 bytes, or approximately one thousand bytes
Kbit 1024 bits

kHz kilohertz (32.000)
kQ kilohms

MHz megahertz

MQ megaohms

pA microamperes

uF microfarads

us microseconds

uv microvolts

pvrms microvolts root-mean-square
mA milliamperes

ms milliseconds

mV millivolts

nA nanoamperes

ns nanoseconds

nv nanovolts

Q ohms

pF picofarads

pp peak-to-peak

ppm parts per million
SPS samples per second
c sigma: one standard deviation
Y, volts
3.24 Acronyms

This table lists the acronyms used in this document

Table 3-2. Acronyms

Acronym Definition
ABUS analog output bus
AC alternating current
ADC analog-to-digital converter
AHB A_MBA (advanced microcontroller bus architecture)
high-performance bus, an ARM data transfer bus
API application programming interface
22

-
Table 3-2. Acronyms (continued)
Acronym Definition

APOR analog power-on reset

BC broadcast clock

BOD brownout detect

BOM bill of materials

BR bit rate

BRA bus request acknowledge
BRQ bus request

CAN controller area network

Cl carry in

CMP compare

CcO carry out

COM LCD common signal

CPU central processing unit

CRC cyclic redundancy check

CSD CapSense sigma delta

CT continuous time

DAC digital-to-analog converter
DAP debug access port

DC direct current

DI digital or data input

DMA direct memory access

DMIPS Dhrystone million instructions per second
DO digital or data output

DSl digital signal interface

DSM deep-sleep mode

DW data wire

ECO external crystal oscillator
EEPROM electrically erasable programmable read only

memory

EMIF external memory interface

FB feedback

FIFO first in first out

FSR full scale range

GPIO general purpose 1/0

HCI host-controller interface
HFCLK high-frequency clock

HSIOM high-speed 1/0 matrix

12c inter-integrated circuit

IDE integrated development environment
ILO internal low-speed oscillator
ITO indium tin oxide

IMO internal main oscillator

INL integral nonlinearity

110 input/output

IOR 1/0 read

10W 1/0 write

IRES initial power on reset

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

A

ws CYPRESS

- EMBEDDED IN TOMORROW

Table 3-2. Acronyms (continued)

Document Construction

Table 3-2. Acronyms (continued)

Acronym Definition Acronym Definition
IRA interrupt request acknowledge SIE serial interface engine
IRQ interrupt request SIO special I/O
ISR interrupt service routine SEO single-ended zero
IVR interrupt vector read SNR signal-to-noise ratio
LCD liquid crystal display SOF start of frame
LFCLK low-frequency clock SOl start of instruction
LPCOMP low-power comparator SP stack pointer
LRb last received bit SPD sequential phase detector
LRB last received byte SPI serial peripheral interconnect
LSb least significant bit SPIM serial peripheral interconnect master
LSB least significant byte SPIS serial peripheral interconnect slave
LUT lookup table SRAM static random-access memory
MISO master-in-slave-out SROM supervisory read only memory
MMIO memory mapped input/output SSADC single slope ADC
MOSI master-out-slave-in SSC supervisory system call
MPU memory protection unit SYSCLK system clock
MShb most significant bit SWD single wire debug
MSB most significant byte TC terminal count
MSP main stack pointer TCPWM timer, counter, PWM
NMI non-maskable interrupt TD transaction descriptors
NVIC nested vectored interrupt controller TIA trans-impedance amplifier
PC program counter UART universal asynchronous receiver/transmitter
PCB printed circuit board ubDB universal digital block
PCH program counter high USB universal serial bus
PCL program counter low USBIO USB I/0
PD power down VTOR vector table offset register
PGA programmable gain amplifier WCO watch crystal oscillator
PM power management WDT watchdog timer
PMA PSoC memory arbiter WDR watchdog reset
POR power-on reset XRES external reset
PPOR precision power-on reset XRES_N external reset, active low
PRS pseudo random sequence
PSoC® Programmable System-on-Chip
PSP process stack pointer
PSRR power supply rejection ratio
PSSDC power system sleep duty cycle
PWM pulse width modulator
RAM random-access memory
RETI return from interrupt
RF radio frequency
ROM read only memory
RMS root mean square
RW read/write
SAR successive approximation register
SEG LCD segment signal
SC switched capacitor
SCB serial communication block

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

23

o CYPRESS

Document Construction > EMBEDDED IN TOMORROW

24 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

Section B: CPU System

& CYPRESS

s EMBEDDED IN TOMORROW"

This section encompasses the following chapters:
m Cortex-M0O+ CPU chapter on page 27
m Interrupts chapter on page 33

Top Level Architecture

CPU System Block Diagram

CPU Subsystem

SWD/TC, MTB
Cortex
MO+

48 MHz

FAST MUL
NVIC, IROMUX, MPU

System Interconnect (Single Layer AHB)

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 25

26

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

4. Cortex-M0O+ CPU

&= CYPRESS

s EMBEDDED IN TOMORROW"

The PSoC® 4 ARM Cortex-MO+ core is a 32-bit CPU optimized for low-power operation. It has an efficient two-stage pipeline,
a fixed 4-GB memory map, and supports the ARMv6-M Thumb instruction set. The Cortex-M0+ also features a single-cycle
32-bit multiply instruction and low-latency interrupt handling. Other subsystems tightly linked to the CPU core include a
nested vectored interrupt controller (NVIC), a SYSTICK timer, and debug.

This section gives an overview of the Cortex-M0+ processor. For more details, see the ARM Cortex-M0+ user guide or tech-
nical reference manual, both available at www.arm.com.

4.1 Features

The PSoC 4 Cortex-M0+ has the following features:

Easy to use, program, and debug, ensuring easier migration from 8- and 16-bit processors
Operates at up to 0.9 DMIPS/MHz; this helps to increase execution speed or reduce power
Supports the Thumb instruction set for improved code density, ensuring efficient use of memory
NVIC unit to support interrupts and exceptions for rapid and deterministic interrupt response
Implements design time configurable Memory Protection Unit (MPU)

Supports unprivileged and privileged mode execution

Supports optional Vector Table Offset Register (VTOR)

Extensive debug support including:
o SWD port

0 Breakpoints

o Watchpoints

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 27

http://www.arm.com

&= CYPRESS

Cortex-M0+ CPU ' EMBEDDED IN TOMORROW

4.2 Block Diagram

Figure 4-1. CPU Subsystem Block Diagram

DSI Interrupts
Fixed Interrupts

CPU Subsystem "ﬁ

ARM Cortex-MO+

CPU
DAP <

System Interconnect

== .

T—>---

\ 4

>

CPU & Memory
Subsystem

v

AHB Bridge

4.3 How It Works

The Cortex-MO0+ is a 32-bit processor with a 32-bit data path, 32-bit registers, and a 32-bit memory interface. It supports most
16-bit instructions in the Thumb instruction set and some 32-bit instructions in the Thumb-2 instruction set.

The processor supports two operating modes (see Operating Modes on page 30). It has a single-cycle 32-bit multiplication
instruction.

4.4 Address Map

The ARM Cortex-M0+ has a fixed address map allowing access to memory and peripherals using simple memory access
instructions. The 32-hit (4 GB) address space is divided into the regions shown in Table 4-1. Note that code can be executed
from the code and SRAM regions.

Table 4-1. Cortex-M0+ Address Map

Address Range Name Use

Program code region. You can also place data here. Includes the exception vector table,

0x00000000 - Ox1FFFFFFF Code which starts at address 0.

0x20000000 - 0x3FFFFFFF SRAM Data region. You can also execute code from this region.
0x40000000 - OX5FFFFFFF Peripheral All peripheral registers. You cannot execute code from this region.
0x60000000 - OXDFFFFFFF Not used.

0xE0000000 - OXEOOFFFFF PPB Peripheral registers within the CPU core.

0xE0100000 - OXFFFFFFFF Device PSoC4 implementation-specific.

28 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

A

ws CYPRESS

4.5

EMBEDDED IN TOMORROW

Registers

Cortex-M0+ CPU

The Cortex-M0+ has sixteen 32-bit registers, as Table 4-2 shows:

m RO to R12 — General-purpose registers. RO to R7 can be accessed by all instructions; the other registers can be accessed
by a subset of the instructions.

m R13 — Stack pointer (SP). There are two stack pointers, with only one available at a time. In thread mode, the CONTROL
register indicates the stack pointer to use, Main Stack Pointer (MSP) or Process Stack Pointer (PSP).

R14 — Link register. Stores the return program counter during function calls.

R15 — Program counter. This register can be written to control program flow.

Table 4-2. Cortex-MO+ Registers

Name Type? Reset Value Description
RO-R12 RW Undefined R0-R12 are 32-bit general-purpose registers for data operations.
MSP (R13) The stack pointer (SP) is register R13. In thread mode, bit[1] of the CONTROL register
indicates which stack pointer to use:
RW [0x00000000] 0 = Main stack pointer (MSP). This is the reset value.
PSP (R13) 1 = Process stack pointer (PSP).
On reset, the processor loads the MSP with the value from address 0x00000000.
LR (R14) RW Undefined The I_|nk register (LR) is re:gster R14. It stores the return information for subroutines,
function calls, and exceptions.
The program counter (PC) is register R15. It contains the current program address. On
PC (R15) RW [0x00000004] | reset, the processor loads the PC with the value from address 0x00000004. Bit[0] of the
value is loaded into the EPSR T-bit at reset and must be 1.
The program status register (PSR) combines:
. Application Program Status Register (APSR).
PSR RW Undefined .)
Execution Program Status Register (EPSR).
Interrupt Program Status Register (IPSR).
APSR RW Undefined The AESR contains the current state of the condition flags from previous instruction
executions.
EPSR RO [0x00000004].0 | On reset, EPSR is loaded with the value bit[0] of the register [0x00000004].
IPSR RO 0 The IPSR contains the exception number of the current ISR.
PRIMASK RW 0 The PRIMASK register prevents activation of all exceptions with configurable priority.
CONTROL RW 0 The CONTROL register controls the stack used when the processor is in thread mode.

a. Describes access type during program execution in thread mode and handler mode. Debug access can differ.

Table 4-3 shows how the PSR bits are assigned.

Table 4-3. Cortex-M0+ PSR Bit Assignments

Bit PSR Register Name Usage
31 APSR N Negative flag

30 APSR z Zero flag

29 APSR C Carry or borrow flag

28 APSR \ Overflow flag

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

29

Cortex-M0+ CPU

Table 4-3. Cortex-M0+ PSR Bit Assignments

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

Bit PSR Register Name

Usage

27-25 — — Reserved

24 EPSR T

Thumb state bit. Must always be 1. Attempting to execute instructions when the T bitis 0
results in a HardFault exception.

23-6 - - Reserved

0 = thread mode
1 =reserved
2=NMI

3 = HardFault

4 —10 =reserved
11 = Svcall

12, 13 =reserved
14 = PendSV

15 = SysTick

16 = IRQO

5-0 IPSR N/A

47 =32

Exception number of current ISR:

Use the MSR or CPS instruction to set or clear bit O of the
PRIMASK register. If the bit is 0, exceptions are enabled. If
the bit is 1, all exceptions with configurable priority, that is,
all exceptions except HardFault, NMI, and Reset, are dis-
abled. See the Interrupts chapter on page 33 for a list of
exceptions.

4.6

The Cortex-M0+ processor supports two operating modes:

Operating Modes

m Thread Mode — used by all normal applications. In this
mode, the MSP or PSP can be used. The CONTROL
register bit 1 determines which stack pointer is used:

o 0= MSP is the current stack pointer
o 1= PSP is the current stack pointer

m Handler Mode — used to execute exception handlers.
The MSP is always used.

In thread mode, use the MSR instruction to set the stack
pointer bit in the CONTROL register. When changing the
stack pointer, use an ISB instruction immediately after the
MSR instruction. This action ensures that instructions after
the ISB execute using the new stack pointer.

In handler mode, explicit writes to the CONTROL register
are ignored, because the MSP is always used. The excep-
tion entry and return mechanisms automatically update the
CONTROL register.

4.7

The Cortex-M0+ implements a version of the Thumb instruc-
tion set, as Table 4-4 shows. For details, see the Cortex-
MO+ Generic User Guide.

Instruction Set

An instruction operand can be an ARM register, a constant,
or another instruction-specific parameter. Instructions act on
the operands and often store the result in a destination reg-
ister. Many instructions are unable to use, or have restric-
tions on using, the PC or SP for the operands or destination
register.

Table 4-4. Thumb Instruction Set

Mnemonic Brief Description
ADCS Add with carry
ADD{S}? Add
ADR PC-relative address to register
ANDS Bit wise AND
ASRS Arithmetic shift right
B{cc} Branch {conditionally}
BICS Bit clear
BKPT Breakpoint
BL Branch with link
BLX Branch indirect with link
BX Branch indirect
CMN Compare negative
CMP Compare
CPSID Change processor state, disable interrupts
CPSIE Change processor state, enable interrupts
DMB Data memory barrier
DSB Data synchronization barrier

30 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

Table 4-4. Thumb Instruction Set

Mnemonic Brief Description
EORS Exclusive OR
ISB Instruction synchronization barrier
LDM Load multiple registers, increment after
LDR Load register from PC-relative address
LDRB Load register with word
LDRH Load register with half-word
LDRSB Load register with signed byte
LDRSH Load register with signed half-word
LSLS Logical shift left
LSRS Logical shift right
MOV{S}? Move
MRS Move to general register from special register
MSR Move to special register from general register
MULS Multiply, 32-bit result
MVNS Bit wise NOT
NOP No operation
ORRS Logical OR
POP Pop registers from stack
PUSH Push registers onto stack
REV Byte-reverse word
REV16 Byte-reverse packed half-words
REVSH Byte-reverse signed half-word
RORS Rotate right
RSBS Reverse subtract
SBCS Subtract with carry
SEV Send event
STM Store multiple registers, increment after
STR Store register as word
STRB Store register as byte
STRH Store register as half-word
SUB{S}? Subtract
SvC Supervisor call
SXTB Sign extend byte
SXTH Sign extend half-word
TST Logical AND-based test
UXTB Zero extend a byte
UXTH Zero extend a half-word
WFE Wait for event
WFI Wait for interrupt

a. The 'S’ qualifier causes the ADD, SUB, or MOV instructions to update
APSR condition flags.

Cortex-M0+ CPU

4.7.1

An aligned access is an operation where a word-aligned
address is used for a word or multiple word access, or
where a half-word-aligned address is used for a half-word
access. Byte accesses are always aligned.

Address Alignment

No support is provided for unaligned accesses on the Cor-
tex-MO+ processor. Any attempt to perform an unaligned
memory access operation results in a HardFault exception.

4.7.2

The Cortex-M0+ uses the little-endian format, where the
least-significant byte of a word is stored at the lowest
address and the most significant byte is stored at the high-
est address.

Memory Endianness

4.8 Systick Timer

The Systick timer is integrated with the NVIC and generates
the SYSTICK interrupt. This interrupt can be used for task
management in a real-time system. The timer has a reload
register with 24 bits available to use as a countdown value.
The Systick timer uses either the Cortex-MO+ internal clock
or the low-frequency clock (LF_CLK) as the source.

4.9 Debug

PSoC 4 contains a debug interface based on SWD; it fea-
tures four breakpoint (address) comparators and two watch-
point (data) comparators.

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 31

o CYPRESS

Cortex-M0+ CPU ~mg> EMBEDDED IN TOMORROW

32 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

S. Interrupts

& CYPRESS

s EMBEDDED IN TOMORROW"

The ARM Cortex-M0+ (CMO0+) CPU in PSoc® 4 supports interrupts and exceptions. Interrupts refer to those events gener-
ated by peripherals external to the CPU such as timers, serial communication block, and port pin signals. Exceptions refer to
those events that are generated by the CPU such as memory access faults and internal system timer events. Both interrupts
and exceptions result in the current program flow being stopped and the exception handler or interrupt service routine (ISR)
being executed by the CPU. The device provides a unified exception vector table for both interrupt handlers/ISR and excep-
tion handlers.

51 Features

PSoC 4 supports the following interrupt features:

m Supports 16 interrupts

Nested vectored interrupt controller (NVIC) integrated with CPU core, yielding low interrupt latency
Vector table may be placed in either flash or SRAM

Configurable priority levels from 0 to 3 for each interrupt

Level-triggered and pulse-triggered interrupt signals

5.2 How It Works

Figure 5-1. PSoC 4 Interrupts Block Diagram

Cortex-MO+ Processor
IRQO
IRQ1
! Nested
Interrupt i
signals from | Vectored Cortex-MO+
PSoC 4 on-chip | Interrupt > c
peripherals Controller rocessor t.ore
i (NVIC)
Up to I!RQ15 N
>

Figure 5-1 shows the interaction between interrupt signals and the Cortex-MO+ CPU. PSoC 4 has 16 interrupts; these inter-
rupt signals are processed by the NVIC. The NVIC takes care of enabling/disabling individual interrupts, priority resolution,
and communication with the CPU core. The exceptions are not shown in Figure 5-1 because they are part of CMO+ core gen-
erated events, unlike interrupts, which are generated by peripherals external to the CPU.

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 33

Interrupts

5.3 Interrupts and Exceptions -
Operation

5.3.1 Interrupt/Exception Handling

The following sequence of events occurs when an interrupt
or exception event is triggered:

1. Assuming that all the interrupt signals are initially low
(idle or inactive state) and the processor is executing the
main code, a rising edge on any one of the interrupt lines
is registered by the NVIC. The interrupt line is now in a
pending state waiting to be serviced by the CPU.

2. On detecting the interrupt request signal from the NVIC,
the CPU stores its current context by pushing the con-
tents of the CPU registers onto the stack.

3. The CPU also receives the exception number of the trig-
gered interrupt from the NVIC. All interrupts and excep-
tions have a unique exception number, as given in
Table 5-1. By using this exception number, the CPU
fetches the address of the specific exception handler
from the vector table.

4. The CPU then branches to this address and executes
the exception handler that follows.

5. Upon completion of the exception handler, the CPU reg-
isters are restored to their original state using stack pop
operations; the CPU resumes the main code execution.

Figure 5-2. Interrupt Handling When Triggered

Rising Edge on Interrupt Line is
registered by the NVIC

4

CPU detects the request signal
from NVIC and stores its
current context by pushing
contents onto the stack

CPU receives exception
number of triggered interrupt
and fetches the address of the
specific exception handle from
vector table.

CPU branches to the received
address and executes
exception handler

CPU registers are restored
using stack upon completion of
exception handler.

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

When the NVIC receives an interrupt request while another
interrupt is being serviced or receives multiple interrupt
requests at the same time, it evaluates the priority of all
these interrupts, sending the exception number of the high-
est priority interrupt to the CPU. Thus, a higher priority inter-
rupt can block the execution of a lower priority ISR at any
time.

Exceptions are handled in the same way that interrupts are
handled. Each exception event has a unique exception num-
ber, which is used by the CPU to execute the appropriate
exception handler.

5.3.2

NVIC supports both level and pulse signals on the interrupt
lines (IRQO to IRQ15). The classification of an interrupt as
level or pulse is based on the interrupt source.

Level and Pulse Interrupts

Figure 5-3. Level Interrupts

IRQn
CPU l4—IRQn is still high

Execution ISR] ISR]
State Ay main

Figure 5-4. Pulse Interrupts

men | LA
cPU N Ny

Execution [ISR ISR _|[ISR
State |

Figure 5-3 and Figure 5-4 show the working of level and
pulse interrupts, respectively. Assuming the interrupt signal
is initially inactive (logic low), the following sequence of
events explains the handling of level and pulse interrupts:

1. On arising edge event of the interrupt signal, the NVIC
registers the interrupt request. The interrupt is now in the
pending state, which means the interrupt requests have
not yet been serviced by the CPU.

2. The NVIC then sends the exception number along with
the interrupt request signal to the CPU. When the CPU
starts executing the ISR, the pending state of the inter-
rupt is cleared.

3. When the ISR is being executed by the CPU, one or
more rising edges of the interrupt signal are logged as a
single pending request. The pending interrupt is serviced
again after the current ISR execution is complete (see
Figure 5-4 for pulse interrupts).

4. If the interrupt signal is still high after completing the ISR,
it will be pending and the ISR is executed again.
Figure 5-3 illustrates this for level triggered interrupts,
where the ISR is executed as long as the interrupt signal
is high.

34 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

5.3.3 Exception Vector Table

Interrupts

The exception vector table (Table 5-1), stores the entry point addresses for all exception handlers. The CPU fetches the

appropriate address based on the exception number.

Table 5-1. Exception Vector Table

Exception Number Exception Exception Priority Vector Address

- Initial Stack Pointer Value Not applicable (NA) gfzsgaoAgg(;gs(Zta?th? gg%\(ﬂ);) (start of flash memory) or
1 Reset -3, the highest priority |Base_Address + 0x04

2 Non Maskable Interrupt (NMI) |2 Base_Address + 0x08

3 HardFault -1 Base_Address + 0x0C

4-10 Reserved NA Base_Address + 0x10 to Base_Address + 0x28
11 Supervisory Call (SVCall) Configurable (0 - 3) Base_Address + 0x2C

12-13 Reserved NA Base_Address + 0x30 to Base_Address + 0x34
14 PendSupervisory (PendSV) Configurable (0 - 3) Base_Address + 0x38

15 System Timer (SysTick) Configurable (0 - 3) Base_Address + 0x3C

16 External Interrupt(IRQO) Configurable (0 - 3) Base_Address + 0x40

Configurable (0 - 3)

31 External Interrupt(IRQ15) Configurable (0 - 3) Base_Address + 0x7C

In Table 5-1, the first word (4 bytes) is not marked as excep-
tion number zero. This is because the first word in the
exception table is used to initialize the main stack pointer
(MSP) value on device reset; it is not considered as an
exception. In PSoC 4, the vector table can be configured to
be located either in flash memory (base address of
0x00000000) or SRAM (base address of 0x20000000). This
configuration is done by writing to the VECT_IN_RAM bit
field (bit0) in the CPUSS_CONFIG register. When the
VECT_IN_RAM bit field is ‘1’, CPU fetches exception han-
dler addresses from the SRAM vector table location. When
this bit field is ‘0’ (reset state), the vector table in flash mem-
ory is used for exception address fetches. You must set the
VECT_IN_RAM bit field as part of the device boot code to
configure the vector table to be in SRAM. The advantage of
moving the vector table to SRAM is that the exception han-
dler addresses can be dynamically changed by modifying
the SRAM vector table contents. However, the nonvolatile
flash memory vector table must be modified by a flash mem-
ory write.

Reads of flash addresses 0x00000000 and 0x00000004 are
redirected to the first eight bytes of SROM to fetch the stack
pointer and reset vectors, unless the NO_RST_OVR bit of
the CPUSS_SYSREQ register is set. To allow flash read
from addresses 0x00000000 and 0x00000004, the
NO_RST_OVR bit should be set to ‘1’. The stack pointer
vector holds the address that the stack pointer is loaded with
on reset. The reset vector holds the address of the boot
sequence. This mapping is done to use the default
addresses for the stack pointer and reset vector from SROM
when the device reset is released. For reset, boot code in
SROM is executed first and then the CPU jumps to address
0x00000004 in flash to execute the handler in flash. The

reset exception address in the SRAM vector table is never
used because VECT_IN_RAM is 0 on reset.

Also, when the SYSREQ bit of the CPUSS_SYSREQ regis-
ter is set, reads of flash address 0x00000008 are redirected
to SROM to fetch the NMI vector address instead of from
flash. Reset CPUSS_SYSREQ to read the flash at address
0x00000008.

The exception sources (exception numbers 1 to 15) are
explained in 5.4 Exception Sources. The exceptions marked
as Reserved in Table 5-1 are not used, although they have
addresses reserved for them in the vector table. The inter-
rupt sources (exception numbers 16 to 31) are explained in
5.5 Interrupt Sources.

5.4

This section explains the different exception sources listed
in Table 5-1 (exception numbers 1 to 15).

Exception Sources

5.4.1

Device reset is treated as an exception in PSoC 4. It is
always enabled with a fixed priority of —3, the highest priority
exception. A device reset can occur due to multiple reasons,
such as power-on-reset (POR), external reset signal on
XRES pin, or watchdog reset. When the device is reset, the
initial boot code for configuring the device is executed out of
supervisory read-only memory (SROM). The boot code and
other data in SROM memory are programmed by Cypress,
and are not read/write accessible to external users. After
completing the SROM boot sequence, the CPU code execu-
tion jumps to flash memory. Flash memory address
0x00000004 (Exception#1 in Table 5-1) stores the location

Reset Exception

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 35

Interrupts

of the startup code in flash memory. The CPU starts execut-
ing code out of this address. Note that the reset exception
address in the SRAM vector table will never be used
because the device comes out of reset with the flash vector
table selected. The register configuration to select the
SRAM vector table can be done only as part of the startup
code in flash after the reset is de-asserted.

5.4.2 Non-Maskable Interrupt (NMI)

Exception

Non-maskable interrupt (NMI) is the highest priority excep-
tion other than reset. It is always enabled with a fixed priority
of —2. There are two ways to trigger an NMI exception in the
device:

m NMI exception by setting NMIPENDSET bit (user NMI
exception): An NMI exception can be triggered in soft-
ware by setting the NMIPENDSET bit in the interrupt
control state register (CMOP_ICSR register). Setting this
bit will execute the NMI handler pointed to by the active
vector table (flash or SRAM vector table).

m System Call NMI exception: This exception is used for
nonvolatile programming operations such as flash write
operation and flash checksum operation. It is triggered
by setting the SYSCALL_REQ bit in the
CPUSS_SYSREQ register. An NMI exception triggered
by SYSCALL_REQ bit always executes the NMI excep-
tion handler code that resides in SROM. Flash or SRAM
exception vector table is not used for system call NMI
exception. The NMI handler code in SROM is not read/
write accessible because it contains nonvolatile pro-
gramming routines that should not be modified by the
user.

54.3

HardFault is an always-enabled exception that occurs
because of an error during normal or exception processing.
HardFault has a fixed priority of —1, meaning it has higher
priority than any exception with configurable priority. Hard-
Fault exception is a catch-all exception for different types of
fault conditions, which include executing an undefined
instruction and accessing an invalid memory addresses.
The CMO0+ CPU does not provide fault status information to
the HardFault exception handler, but it does permit the han-
dler to perform an exception return and continue execution
in cases where software has the ability to recover from the
fault situation.

HardFault Exception

5.4.4

Supervisor Call (SVCall) is an always-enabled exception
caused when the CPU executes the SVC instruction as part
of the application code. Application software uses the SVC
instruction to make a call to an underlying operating system
and provide a service. This is known as a supervisor call.
The SVC instruction enables the application to issue a

Supervisor Call (SVCall) Exception

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

supervisor call that requires privileged access to the system.
Note that the CMO+ in PSoC 4 uses a privileged mode for
the system call NMI exception, which is not related to the
SVCall exception. (See the Chip Operational Modes chapter
on page 73 for details on privileged mode.) There is no other
privileged mode support for SVCall at the architecture level
in the device. The application developer must define the
SVCall exception handler according to the end application
requirements.

The priority of a SVCall exception can be configured to a
value between 0 and 3 by writing to the two bit fields
PRI_11[31:30] of the System Handler Priority Register 2
(SHPR2). When the SVC instruction is executed, the SVCall
exception enters the pending state and waits to be serviced
by the CPU. The SVCALLPENDED bit in the System Han-
dler Control and State Register (SHCSR) can be used to
check or modify the pending status of the SVCall exception.

5.4.5 PendSV Exception

PendSV is another supervisor call related exception similar
to SVCall, normally being software-generated. PendSV is
always enabled and its priority is configurable. The PendSV
exception is triggered by setting the PENDSVSET bit in the
Interrupt Control State Register, CMOP_ICSR. On setting
this bit, the PendSV exception enters the pending state, and
waits to be serviced by the CPU. The pending state of a
PendSV exception can be cleared by setting the PENDSV-
CLR bit in the Interrupt Control State Register, CMOP_ICSR.
The priority of a PendSV exception can be configured to a
value between 0 and 3 by writing to the two bit fields
PRI_14[23:22] of the System Handler Priority Register 3
(CMOP_SHPR3). See the ARMv6-M Architecture Reference
Manual for more details.

36 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

5.4.6

CMO+ CPU in PSoC 4 supports a system timer, referred to
as SysTick, as part of its internal architecture. SysTick pro-
vides a simple, 24-bit decrementing counter for various
timekeeping purposes such as an RTOS tick timer, high-
speed alarm timer, or simple counter. The SysTick timer can
be configured to generate an interrupt when its count value
reaches zero, which is referred to as SysTick exception. The
exception is enabled by setting the TICKINT bit in the Sys-
Tick Control and Status Register (CMOP_SYST_CSR). The
priority of a SysTick exception can be configured to a value
between 0 and 3 by writing to the two bit fields
PRI_15[31:30] of the System Handler Priority Register 3
(SHPR3). The SysTick exception can always be generated
in software at any instant by writing a one to the PENDST-
SETb bit in the Interrupt Control State Register,
CMOP_ICSR. Similarly, the pending state of the SysTick
exception can be cleared by writing a one to the PENDST-
CLR bit in the Interrupt Control State Register, CMOP_ICSR.

SysTick Exception

Table 5-2. List of PSoC 4 Interrupt Sources

Interrupts

5.5

PSoC 4 supports 16 interrupts (IRQO to IRQ15 or exception
numbers 16 — 31) from peripherals. The source of each
interrupt is listed in Table 5-3. PSoC 4 provides flexible
sourcing options for each of the 16 interrupt lines. The inter-
rupts include standard interrupts from the on-chip peripher-
als such as TCPWM and serial communication block. The
interrupt generated is usually the logical OR of the different
peripheral states. The peripheral status register should be
read in the ISR to detect which condition generated the
interrupt. interrupts are usually level interrupts, which
require that the peripheral status register be read in the ISR
to clear the interrupt. If the status register is not read in the
ISR, the interrupt will remain asserted and the ISR will be
executed continuously.

Interrupt Sources

See the /O System chapter on page 53 for details on GPIO
interrupts.

Interrupt AR Interrupt Source
Exception No.

NMI 2 SYS_REQ
IRQO 16 GPIO Interrupt - Port O
IRQ1 17 GPIO Interrupt - Port 1
IRQ2 18 GPIO Interrupt - Port 2
IRQ3 19 GPIO Interrupt - Port 3
IRQ4 20 GPIO Interrupt - All Port
IRQ5 21 LPCOMP (low-power comparator)
IRQ6 22 WDT (Watchdog timer)
IRQ7 23 SCBO (Serial Communication Block 0)
IRQ8 24 SCB1 (Serial Communication Block 1)
IRQ9 25 SPCIF Interrupt
IRQ10 26 CSD (CapSense)
IRQ11 27 TCPWMO (Timer/Counter/PWM 0)
IRQ12 28 TCPWML1 (Timer/Counter/PWM 1)
IRQ13 29 TCPWM2 (Timer/Counter/PWM 2)
IRQ14 30 TCPWM3 (Timer/Counter/PWM 3)
IRQ15 31 TCPWM4 (Timer/Counter/PWM 4)

5.6

Exception priority is useful for exception arbitration when
there are multiple exceptions that need to be serviced by the
CPU. PSoC 4 provides flexibility in choosing priority values
for different exceptions. All exceptions other than Reset,
NMI, and HardFault can be assigned a configurable priority
level. The Reset, NMI, and HardFault exceptions have a
fixed priority of —3, —2, and —1 respectively. In PSoC 4, lower
priority numbers represent higher priorities. This means that

Exception Priority

the Reset, NMI, and HardFault exceptions have the highest
priorities. The other exceptions can be assigned a configu-
rable priority level between 0 and 3.

PSoC 4 supports nested exceptions in which a higher prior-
ity exception can obstruct (interrupt) the currently active
exception handler. This pre-emption does not happen if the
incoming exception priority is the same as active exception.
The CPU resumes execution of the lower priority exception
handler after servicing the higher priority exception. The
CMO+ CPU in PSoC 4 allows nesting of up to four excep-

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 37

Interrupts

tions. When the CPU receives two or more exceptions
requests of the same priority, the lowest exception number is
serviced first.

The registers to configure the priority of exception numbers
1 to 15 are explained in “Exception Sources” on page 35.

The priority of the 16 interrupts (IRQO to IRQ15) can be con-
figured by writing to the Interrupt Priority registers
(CMOP_IPR). This is a group of 32-bit registers with each
register storing the priority values of four interrupts, as given
in Table 5-3. The other bit fields in the register are not used.

Table 5-3. Interrupt Priority Register Bit Definitions

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

are enabled. Configurable priority exceptions include all the
exceptions except Reset, NMI, and HardFault listed in
Table 5-1. They can be configured to a priority level between
0 and 3, 0 being the highest priority and 3 being the lowest
priority. When the PM bit (bit 0) in the PRIMASK register is
set, none of the configurable priority exceptions can be ser-
viced by the CPU, though they can be in the pending state
waiting to be serviced by the CPU after the PM bit is cleared.

5.8 Exception States
Each exception can be in one of the following states.

Table 5-5. Exception States

Bits Name Description
7:6 PRI_NO Priority of interrupt number N. =g S Meaning

- o : The exception is not active or pending.

15:14 PRI_N1 Priority of interrupt number N+1. Inactive Either the exception is disabled or the
23:22 PRI_N2 Priority of interrupt number N+2. enabled exception has not been triggered.

31:30 PRI_N3 Priority of interrupt number N+3. The exception request is received by the
Pending CPU/NVIC and the exception is waiting to
. . . be serviced by the CPU.

5 ' 7 En abl In g an d DI S ab l In g An exception that is being serviced by the
Interru ptS CPU but whose exception handler execu-

Active tion is not yet complete. A high-priority

The NVIC provides registers to individually enable and dis-
able the 16 interrupts in software. If an interrupt is not
enabled, the NVIC will not process the interrupt requests on
that interrupt line. The Interrupt Set-Enable Register
(CMOP_ISER) and the Interrupt Clear-Enable Register
(CMOP_ICER) are used to enable and disable the interrupts
respectively. These are 32-bit wide registers and each bit
corresponds to the same numbered interrupt. These regis-
ters can also be read in software to get the enable status of
the interrupts. Table 5-4 shows the register access proper-
ties for these two registers. Note that writing zero to these
registers has no effect.

Table 5-4. Interrupt Enable/Disable Registers

Register Operation | Bit Value Comment
Write 1 To enable the interrupt
Interrupt Se_t 0 No effect
Enable Register 1 I - bled
(CMOP_ISER) | Read nterrupt is enable
0 Interrupt is disabled
Wiite 1 To disable the interrupt
Interrupt Cle_zar 0 No effect
Enable Register 1 I - bled
(CMOP_ICER) | Read nterrupt is enable
0 Interrupt is disabled

The CMOP_ISER and CMOP_ICER registers are applicable
only for interrupts IRQO to IRQ15. These registers cannot be
used to enable or disable the exception numbers 1 to 11.
The 15 exceptions have their own support for enabling and
disabling, as explained in “Exception Sources” on page 35.

The PRIMASK register in Cortex-M0+ (CM0+) CPU can be
used as a global exception enable register to mask all the
configurable priority exceptions irrespective of whether they

exception can interrupt the execution of
lower priority exception. In this case, both
the exceptions are in the active state.

The exception is serviced by the processor
and there is a pending request from the
same source during its exception handler
execution.

Active and Pending

The Interrupt Control State Register (CMOP_ICSR) contains
status bits describing the various exceptions states.

m The VECTACTIVE bits ([8:0]) in the CMOP_ICSR store
the exception number for the current executing excep-
tion. This value is zero if the CPU does not execute any
exception handler (CPU is in thread mode). Note that the
value in VECTACTIVE bit fields is the same as the value
in bits [8:0] of the Interrupt Program Status Register
(IPSR), which is also used to store the active exception
number.

m The VECTPENDING bits ([20:12]) in the CMOP_ICSR
store the exception number of the highest priority pend-
ing exception. This value is zero if there are no pending
exceptions.

m The ISRPENDING bit (bit 22) in the CMOP_ICSR indi-
cates if a NVIC generated interrupt (IRQO to IRQ15) is in
a pending state.

5.8.1

When a peripheral generates an interrupt request signal to
the NVIC or an exception event occurs, the corresponding
exception enters the pending state. When the CPU starts
executing the corresponding exception handler routine, the

Pending Exceptions

38 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

exception is changed from the pending state to the active
state.

The NVIC allows software pending of the 16 interrupt lines
by providing separate register bits for setting and clearing
the pending states of the interrupts. The Interrupt Set-Pend-
ing register (CMOP_ISPR) and the Interrupt Clear-Pending
register (CMOP_ICPR) are used to set and clear the pend-
ing status of the interrupt lines. These are 32-bit wide regis-
ters and each bit corresponds to the same numbered
interrupt.

Table 5-6 shows the register access properties for these two
registers. Note that writing zero to these registers has no
effect.

Table 5-6. Interrupt Set Pending/Clear Pending Registers

. . Bit
Register Operation value Comment
1 To put an interrupt to
i ending state
Interrupt Set- Write P 9
Pending Register 0 | No effect
(CMOP_ISPR) Interrupt is pending
Read - -
0 Interrupt is not pending
1 To clear a pending
i interrupt
Interrupt Clear- Write P
Pending Register 0 | No effect
(CMOP_ICPR) Interrupt is pending
Read - -
0 Interrupt is not pending

Setting the pending bit when the same bit is already set
results in only one execution of the ISR. The pending bit can
be updated regardless of whether the corresponding
interrupt is enabled. If the interrupt is not enabled, the
interrupt line will not move to the pending state until it is
enabled by writing to the CMOP_ISER register.

Note that the CMOP_ISPR and CMOP_ICPR registers are
used only for the 16 peripheral interrupts (exception
numbers 16-31). These registers cannot be used for
pending the exception numbers 1 to 11. These 15
exceptions have their own support for pending, as explained
in “Exception Sources” on page 35.

5.9

When the CPU executes the main code (in thread mode)
and an exception request occurs, the CPU stores the state
of its general-purpose registers in the stack. It then starts
executing the corresponding exception handler (in handler
mode). The CPU pushes the contents of the eight 32-bit
internal registers into the stack. These registers are the
Program and Status Register (PSR), ReturnAddress, Link
Register (LR or R14), R12, R3, R2, R1, and RO. Cortex-MO+
has two stack pointers - MSP and PSP. Only one of the
stack pointers can be active at a time. When in thread mode,
the Active Stack Pointer bit in the Control register is used to

Stack Usage for Exceptions

Interrupts

define the current active stack pointer. When in handler
mode, the MSP is always used as the stack pointer. The
stack pointer in Cortex-MO+ always grows downwards and
points to the address that has the last pushed data.

When the CPU is in thread mode and an exception request
comes, the CPU uses the stack pointer defined in the
control register to store the general-purpose register
contents. After the stack push operations, the CPU enters
handler mode to execute the exception handler. When
another higher priority exception occurs while executing the
current exception, the MSP is used for stack push/pop
operations, because the CPU is already in handler mode.
See the Cortex-M0+ CPU chapter on page 27 for details.

The Cortex-M0+ uses two techniques, tail chaining and late
arrival, to reduce latency in servicing exceptions. These
techniques are not visible to the external user and are part
of the internal processor architecture. For information on tail
chaining and late arrival mechanism, visit the ARM
Infocenter.

5.10 Interrupts and Low-Power

Modes

PSoC 4 allows device wakeup from low-power modes when
certain peripheral interrupt requests are generated. The
Wakeup Interrupt Controller (WIC) block generates a
wakeup signal that causes the device to enter Active mode
when one or more wakeup sources generate an interrupt
signal. After entering Active mode, the ISR of the peripheral
interrupt is executed.

The Wait For Interrupt (WFI) instruction, executed by the
CMO+ CPU, triggers the transition into Sleep and Deep-
Sleep modes. The sequence of entering the different low-
power modes is detailed in the Power Modes chapter on
page 75. Chip low-power modes have two categories of
fixed-function interrupt sources:

m Fixed-function interrupt sources that are available only in
the Active and Deep-Sleep modes (watchdog timer
interrupt,)

m Fixed-function interrupt sources that are available only in
the Active mode (all other fixed-function interrupts)

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 39

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0662b/Babefdjc.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0662b/Babefdjc.html

o CYPRESS

Interrupts > EMBEDDED IN TOMORROW

5.11 Exceptions — Initialization and Configuration

This section covers the different steps involved in initializing and configuring exceptions in PSoC 4.

1. Configuring the Exception Vector Table Location: The first step in using exceptions is to configure the vector table location
as required — either in flash memory or SRAM. This configuration is done by writing either a ‘1’ (SRAM vector table) or ‘0’
(flash vector table) to the VECT_IN_RAM bit field (bit 0) in the CPUSS_CONFIG register. This register write is done as
part of device initialization code.

It is recommended that the vector table be available in SRAM if the application needs to change the vector addresses
dynamically. If the table is located in flash, then a flash write operation is required to modify the vector table contents.
PSoC Creator IDE uses the vector table in SRAM by default.

2. Configuring Individual Exceptions: The next step is to configure individual exceptions required in an application.

a. Configure the exception or interrupt source; this includes setting up the interrupt generation conditions. The register
configuration depends on the specific exception required.

b. Define the exception handler function and write the address of the function to the exception vector table. Table 5-1
gives the exception vector table format; the exception handler address should be written to the appropriate exception
number entry in the table.

c. Set up the exception priority, as explained in “Exception Priority” on page 37.
Enable the exception, as explained in “Enabling and Disabling Interrupts” on page 38.

5.12 Registers

Table 5-7. List of Registers

Register Name Description
CMOP_ISER Interrupt Set-Enable Register
CMOP_ICER Interrupt Clear Enable Register
CMOP_ISPR Interrupt Set-Pending Register
CMOP_ICPR Interrupt Clear-Pending Register
CMOP_IPR Interrupt Priority Registers
CMOP_ICSR Interrupt Control State Register
CMOP_AIRCR Application Interrupt and Reset Control Register
CMOP_SCR System Control Register
CMOP_CCR Configuration and Control Register
CMOP_SHPR2 System Handler Priority Register 2
CMOP_SHPR3 System Handler Priority Register 3
CMOP_SHCSR System Handler Control and State Register
CMOP_SYST_CSR Systick Control and Status Register
CPUSS_CONFIG CPU Subsystem Configuration Register
CPUSS_SYSREQ System Request Register

5.13 Associated Documents

m ARMv6-M Architecture Reference Manual — This document explains the ARM Cortex-M0+ architecture, including the
instruction set, NVIC architecture, and CPU register descriptions.

40 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html

Section C:System Resources Subsystem (SRSS)

&2 CYPRESS

EMBEDDED IN TOMORROW™

This section encompasses the following chapters:

I/O System chapter on page 43

Clocking System chapter on page 61

Power Supply and Monitoring chapter on page 69
Chip Operational Modes chapter on page 73
Power Modes chapter on page 75

Watchdog Timer chapter on page 79

Reset System chapter on page 85

Device Security chapter on page 87

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 41

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

Top Level Architecture

42

PSoC 4000S
Architecture

32-bit

AHB-Lite

System Resources
Lite

Power
Sleep Control
wIC
POR [REF
PWRSYS

Clock
Clock Control
WDT
ILO [IMO

Reset

Reset Control

XRES

System-Wide Resources Block Diagram

Peripherals ii)
N Peripheral Interconnect (MMIO)

1L

Power Modes

IOSS GPIO (5x ports)

High Speed I/O Matrix & 2x Programmable 1/O |

Active/Sleep

| 36x GPIOs]

DeepSleep

10 Subsystem

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

6. 1/O System

&= CYPRESS

s EMBEDDED IN TOMORROW"

This chapter explains the PSoC® 4 1/0 system, its features, architecture, operating modes, and interrupts. The GPIO pins in
PSoC 4 are grouped into ports; a port can have a maximum of eight GPIOs. The PSoC 4000S family has a maximum of 36
GPIOs arranged in five ports.

6.1 Features

The PSoC 4 GPIOs have these features:

Analog and digital input and output capabilities

Eight drive strength modes

Edge-triggered interrupts on rising edge, falling edge, or on both the edges, on pin basis
Slew rate control

Hold mode for latching previous state (used for retaining 1/O state in Deep-Sleep mode)
Selectable CMOS and low-voltage LVTTL input buffer mode

Smart I/0O block provides the ability to perform Boolean functions in the I/O signal path
CapSense support

Segment LCD drive support

Two analog mux buses (AMUXBUS-A and AMUXBUS-B) that can be used to multiplex analog signals

6.2 GPIO Interface Overview

PSoC 4 is equipped with analog and digital peripherals. Figure 6-1 shows an overview of the routing between the peripherals
and pins.

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 43

o CYPRESS

I/O System ~mg> EMBEDDED IN TOMORROW

Figure 6-1. GPIO Interface Overview

GPIO Port Control
Fixed
o) o} Function
e}
SolallE9 || cso Digital | | Se9meNt
S 3l | 5 | |20 Controller| [Peripherals Control
3O |8 §) (TCPWM,
= 3 =
S £ 12C)
e T
———
High Speed 10 Matrix ‘
(HSIOM)
A
A
Smart 1/0*
10 Cell
CapSense LPCOMP Pin

o

AMUXBUS-A

AMUXBUS-B

* Not available on all GPIOs

GPIO pins are connected to I/O cells. These cells are equipped with an input buffer for the digital input, providing high input
impedance and a driver for the digital output signals. The digital peripherals connect to the 1/O cells via the high-speed I/O
matrix (HSIOM). HSIOM contains multiplexers to connect between a peripheral selected by the user and the pin. Some port
pins have a Smart I/0O block between the HSIOM and the pins. The Smart I/O block enables logical operations on the pin sig-
nal. The analog peripheral and analog mux bus connections are done in the GPIO cell directly. The CapSense block is con-
nected to the GPIO pins through the AMUX buses.

6.3 I/O Cell Architecture

Figure 6-2 shows the 1/O cell architecture. It comprises of an input buffer and an output driver. This architecture is present in
every GPIO cell. It connects to the HSIOM multiplexers/Smart 1/0 block for the digital input and the output signal.

44 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

I/O System

Figure 6-2. GPIO Block Diagram

Digital Input Path

GPIO_PRTx_PC[24]

Naming Convention
X' = Port Number

GPIO _PRTx_PC2[y]

'y’ = Pin Number

GPIO_PRTX_INTR_CFG[2y+1:2y
GPIO_PRTx_INTRI[y] Interrupt
Logic

— Pin Interrupt Signal —‘

HSIOM t

GPIO_PRT_PSy]

TCPWM Trigger Input
< —

SCB (SP!, 12C, UART)
<

HSIOM_PORT_SELx[4y+3:4y] 4,

Buffer Mode Select

Input Buffer Disable

Digital Output Path
GPIO_PRTx_PC[25]

HSIOM_PORT_SELx[4y+3:4y] 4,

HSIOM

GPIO_PRTX_DRIy]
ACT_0 (TCPWM)
ACT 1 (SCB-UART)

[——DPSLP 0(LCD-COM)
[——>-DPSLP 1(LCD-SEG)

DPSLP_2 (SCB - 12C, LPCOMP, SWD)

DPSLP_3 (SCB - SPI
[estP a(sca=se

GPIO_PRTx_PC[3y+2:3y]

" Digital Slew
Logic cntl

Xew

Drive
Mode

OUTPUT ENABLE
> OE
Analog

Dedicated Analog Resources (LPCOMP) AN ——4

HSIOM_PORT_SELx[4y+3:4y] 4 Switches
"""" 1

AMUXBUSA (CapSense) AMA—
T

AMUXBUSB (Cap Shield) AAA

6.3.1 Digital Input Buffer

The digital input buffer provides a high-impedance buffer for
the external digital input. The buffer is enabled and disabled
by the INP_DIS bit of the Port Configuration Register 2
(GPIO_PRTx_PC2, where x is the port number). The buffer
is configurable for the following modes:

m CMOS
m LVTTL

These buffer modes are selected by the PORT_VTRIP_SEL
bit (GPIO_PRTx_PC[24])of the Port Configuration register.

Table 6-1. Input Buffer Modes

PORT_VTRIP_SEL Input Buffer Mode
Ob CMOS
1b LVTTL

The threshold values for each mode can be obtained from
the device datasheet. The output of the input buffer is con-
nected to the HSIOM for routing to the selected peripherals.
Writing to the HSIOM port select register
(HSIOM_PORT_SELX) selects the peripheral. The digital
input peripherals in the HSIOM, shown in , are pin depen-
dent. See the device datasheet to know the functions avail-
able for each pin.

6.3.2 Digital Output Driver

Pins are driven by the digital output driver. It consists of cir-
cuitry to implement different drive modes and slew rate con-
trol for the digital output signals. The peripheral connects to
the digital output driver through the HSIOM; a particular
peripheral is selected by writing to the HSIOM port select
register (HSIOM_PORT_SELX).

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 45

I/O System

In PSoC 4000S I/Os are driven with Vppp supply. Each
GPIO pin has ESD diodes to clamp the pin voltage to the
Vppp source. Ensure that the voltage at the pin does not
exceed the 1/0 supply voltage Vppp and drop below Vggp.
For the absolute maximum and minimum GPIO voltage, see
the device datasheet. The digital output driver can be
enabled and disabled using the DSI signal from the periph-
eral or data register (GPIO_PRTx_DR) associated with the
output pin. See 6.4 High-Speed 1/0O Matrix to know about the

Table 6-2. Drive Mode Settings

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

peripheral source selection for the data and to enable or dis-
able control source selection.

6.3.2.1

Each I/O is individually configurable into one of eight drive
modes using the Port Configuration register,
GPIO_PRTx_PC. Table 6-2 lists the drive modes. Figure 6-2
is a simplified output driver diagram that shows the pin view
based on each of the eight drive modes.

Drive Modes

GPIO_PRTx_PC ('x' denotes port number and 'y' denotes pin number)

Bits Drive Mode Value Data=1 | Data=0
SELY’ Selects Drive Mode for Pin'y' (0 <y <7)
High-Impedance Analog 0 High Z High z
High-impedance Digital 1 High Z High Z
Resistive Pull Up 2 Weak 1 Strong 0

3y+2: 3y Resistive Pull Down 3 Strong 1 Weak 0
Open Drain, Drives Low 4 High Z Strong 0
Open Drain, Drives High 5 Strong 1 High Z
Strong Drive 6 Strong 1 Strong 0
Resistive Pull Up and Down 7 Weak 1 Weak 0

Figure 6-3. 1/0 Drive Mode Block Diagram

i;

~

DB>o

DB

5

Ly

VAN
Xe

£\

.

0. High Impedance 1. High Impedance

2. Resistive Pull Up 3. Resistive Pull Down

Analog Digital
vdd va‘dd vdd
PS! 4{ %‘ PS <| %
4. Open Drain 5. Open Drain 6. Strong Drive 7. Resistive Pull Up
Drives Low Drives High and Pull Down

m High-Impedance Analog

46

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

o CYPRESS

~mg> EMBEDDED IN TOMORROW 110 System

High-impedance analog mode is the default reset state; both output driver and digital input buffer are turned off. This state
prevents an external voltage from causing a current to flow into the digital input buffer. This drive mode is recommended for
pins that are floating or that support an analog voltage. High-impedance analog pins cannot be used for digital inputs. Read-
ing the pin state register returns a 0x00 regardless of the data register value. To achieve the lowest device current in low-
power modes, unused GPIOs must be configured to the high-impedance analog mode.

m High-Impedance Digital

High-impedance digital mode is the standard high-impedance (High Z) state recommended for digital inputs. In this state, the
input buffer is enabled for digital input signals.

m Resistive Pull-Up or Resistive Pull-Down

Resistive modes provide a series resistance in one of the data states and strong drive in the other. Pins can be used for either
digital input or digital output in these modes. If resistive pull-up is required, a ‘1’ must be written to that pin’'s Data Register bit.
If resistive pull-down is required, a ‘0’ must be written to that pin’s Data Register. Interfacing mechanical switches is a com-
mon application of these drive modes. The resistive modes are also used to interface PSoC with open drain drive lines.
Resistive pull-up is used when input is open drain low and resistive pull-down is used when input is open drain high.

m Open Drain Drives High and Open Drain Drives Low
Open drain modes provide high impedance in one of the data states and strong drive in the other. The pins can be used as

digital input or output in these modes. Therefore, these modes are widely used in bi-directional digital communication. Open
drain drive high mode is used when signal is externally pulled down and open drain drive low is used when signal is externally

pulled high. A common application for open drain drives low mode is driving 1°C bus signal lines.
m Strong Drive
The strong drive mode is the standard digital output mode for pins; it provides a strong CMOS output drive in both high and

low states. Strong drive mode pins must not be used as inputs under normal circumstances. This mode is often used for digi-
tal output signals or to drive external transistors.

m Resistive Pull-Up and Resistive Pull-Down

In the resistive pull-up and resistive pull-down mode, the GPIO will have a series resistance in both logic 1 and logic 0 output
states. The high data state is pulled up while the low data state is pulled down. This mode is used when the bus is driven by
other signals that may cause shorts.

6.3.2.2 Slew Rate Control

GPIO pins have fast and slow output slew rate options in strong drive mode; this is configured using PORT_SLOW bit of the
Port Configuration register (GPIO_PRTx_PC[25]). Slew rate is individually configurable for each port. This bit is cleared by
default and the port works in fast slew mode. This bit can be set if a slow slew rate is required. Slower slew rate results in
reduced EMI and crosstalk; hence, the slow option is recommended for low-frequency signals or signals without strict timing
constraints.

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B a7

o CYPRESS

I/O System ~mg> EMBEDDED IN TOMORROW

6.4 High-Speed 1/0O Matrix

The high-speed 1/0 matrix (HSIOM) is a group of high-speed switches that routes GPIOs to the peripherals inside the device.
As the GPIOs are shared for multiple functions, HSIOM multiplexes the pin and connects to a particular peripheral selected by
the user. PSoC4000S, the Smart I/O block bridges the Port 2 and Port 3 pins to the HSIOM. Other ports connect directly to
the HSIOM.The HSIOM_PORT_SELXx register is provided to select the peripheral. It is a 32-bit wide register available for
each port, with each pin occupying four bits. This register provides up to 16 different options for a pin as listed in Table 6-3.

Table 6-3. PSoC 4000S HSIOM Port Settings

HSIOM_PORT_SELXx (‘X' denotes port number and 'y' denotes pin number)

Bits Name (SEL'y") Value Description (Selects pin 'y' source (0<y <£7))

DR 0 Pin is regular firmware-controlled 1/0O or connected to dedicated hardware block.

CSD_SENSE 4 Pin is a CSD sense pin (analog mode).

CSD_SHIELD 5 Pin is a CSD shield pin (analog mode).

AMUXA 6 Pin is connected to AMUXBUS-A.
Pin is connected to AMUXBUS-B. This mode is also used for CSD I/O charging. When CSD 1/O

AMUXB 7 charging is enabled in CSD_CONTROL, the digital I/O driver is connected to csd_charge signal
(the pin is still connected to AMUXBUS-B).

4y+3 - 4y ACTIVE_O 8 Pin-specific Active source #0 (TCPWM Output).

ACTIVE_1 9 Pin-specific Active source #1 (SCB-UART).

ACTIVE_2 10 Pin-specific Active source #2 (Reserved).

ACTIVE_3 11 Pin-specific Active source #3 (TCPWM Input).

DEEP_SLEEP_0 |12 Pin-specific Deep-Sleep source #0 (LCD - COM).

DEEP_SLEEP_1 |13 Pin-specific Deep-Sleep source #1 (LCD - SEG).

DEEP_SLEEP_2 |14 Pin-specific Deep-Sleep source #2 (SCB-I°C, SWD, LPCOMP).

DEEP_SLEEP_3 |15 Pin-specific Deep-Sleep source #3 (SCB-SPI).

Note The Active and Deep-Sleep sources are pin dependent. See the “Pinouts” section of the device datasheet for more
details on the features supported by each pin.

6.5 Smart I/O

The Smart 1/0 block adds programmable logic to an 1/O port. This programmable logic integrates board-level Boolean logic
functionality such as AND, OR, and XOR into the port. The Smart I/O block has these features:

Integrate board-level Boolean logic functionality into a port
Ability to preprocess HSIOM input signals from the GPIO port pins
Ability to post-process HSIOM output signals to the GPIO port pins

Support in all device power modes
m Integrate closely to the 1/0 pads, providing shortest signal paths with programmability

PSoC 4000S supports Smart I/O on two ports — Port 2 and Port 3. The register nomenclature ‘PRGIO_PRTO’ denotes Port 2
Smart 1/O registers and ‘PRGIO_PRT1’ denotes Port 3 Smart I/O registers. For a general Smart 1/O register description, the
‘PRGIO_PRTx’ nomenclature will be used.

6.5.1 Overview

The Smart I/O block is positioned in the signal path between the HSIOM and the I/O port. The HSIOM multiplexes the output
signals from fixed-function peripherals and CPU to a specific port pin and vice-versa. The Smart I/O block is placed on this
signal path, acting as a bridge that can process signals from port pins and HSIOM, as shown in Figure 6-4.

48 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

o CYPRESS

~mg> EMBEDDED IN TOMORROW I/O System
Figure 6-4. Smart I/O Interface
HSIOM GPIO Output
Output Signals) Signals
(3) >
» ___'I'____—__“\7//‘"_____—_r___ »
1
| |
! I
[
HSIOM @ Smart1/0O C}? I/O Port
: |
! l
< SR S)= 1---—«
HSIOM g GPIO Input
Input Signals Signals

The signal paths supported through the Smart 1/0 block as
shown in Figure 6-4 are as follows:

1. Implement self-contained logic functions that directly
operate on port I/O signals

2. Implement self-contained logic functions that operate on
HSIOM signals or a combination of both

3. Operate on and modify HSIOM output signals and route
the modified signals to port 1/O signals

4. Operate on and modify port I/0 signals and route the
modified signals to HSIOM input signals

The following sections discuss the Smart 1/0 block compo-
nents, routing, and configuration in detail. In these sections,
GPIO signals (io_data) refer to the input/output signals from
the 1/0 port; device or chip (chip_data) signals refer to the
input/output signals from HSIOM.

6.5.2

The internal logic of the Smart I/O includes these compo-
nents:

Block Components

m Clock/reset component
m Synchronizers

m LUT3 components

m Data unit component

6.5.2.1

The clock and reset component selects the Smart 1/O
block’s clock (clk_block) and reset signal (rst_block_n). A
single clock and reset signal is used for all components in
the block. The clock and reset sources are determined by
the CLOCK_SRC[4:0] bit field of the PRGIO_PRTx_CTL
register. The selected clock is used for the synchronous
logic in the block components, which includes the I/O input
synchronizers, LUT, and data unit components. The
selected reset is used to asynchronously reset the synchro-
nous logic in the LUT and data unit components.

Clock and Reset

Note that the selected clock (clk_block) for the block’s syn-
chronous logic is not phase-aligned with other synchronous
logic in the device, operating on the same clock. Therefore,

communication between Smart I/O and other synchronous
logic should be treated as asynchronous.

The following clock sources are available for selection:

m GPIO input signals “io_data_in[7:0]". These clock
sources have no associated reset.

m HSIOM output signals “chip_data[7:0]". These clock
sources have no associated reset.

m The Smart I/O clock (clk_prgio). This is derived from the
system clock (clk_sys) using a peripheral clock divider.
See the Clocking System chapter on page 61 for details
on peripheral clock dividers. This clock is only available
in Active and Sleep power modes. The clock can have
one out of two associated resets: rst_sys_act_n and
rst_sys_dpslp_n. These resets determine in which sys-
tem power modes the block synchronous state is reset;
for example, rst_sys_act_n is intended for Smart I/O
synchronous functionality in the Active power mode and
reset is activated in the Deep-Sleep power mode.

m The low-frequency (40 kHz) system clock (clk_If). This
clock is available in Deep-Sleep power mode. This clock
has an associated reset, rst_If_dpslp_n.

When the block is enabled, the selected clock (clk_block)
and associated reset (rst_block_n) are released to the fabric
components. When the fabric is disabled, no clock is
released to the fabric components and the reset is activated
(the LUT and data unit components are set to the reset
value of ‘0’).

The 1/0O input synchronizers introduce a delay of two
clk_block cycles (when synchronizers are enabled). As a
result, in the first two cycles, the block may be exposed to
stale data from the synchronizer output. Hence, during the
first two clock cycles, the reset is activated and the block is
in bypass mode.

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 49

o CYPRESS

I/O System ~mg> EMBEDDED IN TOMORROW

Table 6-4. Clock and Reset Register Control

Register[BIT_POS] Bit Name Description

Clock (clk_block)/reset (rst_block_n) source selection:
"0": io_data[0]/'1'

"7": io_data[7]/'1'
"8": chip_data[0]/'1'

"15": chip_data[7]/'1'

"16": clk_prgio/rst_sys_act_n; asserts reset in any power mode other than Active; that is,
Smart I/O is active only in Active power mode with clock from the peripheral divider.

"17": clk_prgio/rst_sys_dpslp_n. Smart I/O is active in all power modes with clock from the
peripheral divider. However, the clock will not be active in Deep-Sleep power mode.

"19": clk_If/rst_If_dpslp_n. Smart I/O is active in all power modes with clock from ILO.
"20"-"30": Clock source is a constant '0'. Any of these clock sources should be selected
when the IP is disabled to ensure low power consumption.

"31": clk_sys/'1". This selection is NOT intended for "clk_sys" operation. However, for asyn-
chronous operation, three "clk_sys" cycles after enabling the IP, the IP is fully functional
(reset is de-activated). To be used for asynchronous (clockless) block functionality.

PRGIO_PRTO_CTL[12:8] |CLK_SRC[4:0]

6.5.2.2 Synchronizer

Each GPIO input signal and device input signal (HSIOM input) can be used either asynchronously or synchronously. To use
the signals synchronously, a double flip-flop synchronizer, as shown in Figure 6-5, is placed on both these signal paths to syn-
chronize the signal to the Smart I/O clock (clk_block). The synchronization for each pin/input is enabled or disabled by setting
or clearing the I0_SYNC_ENJi] bit field for GPIO input signal and CHIP_SYNC_EN]Ji] for HSIOM signal in the
PRGIO_PRTO_SYNC_CTL register, where ‘i’ is the pin number.

Figure 6-5. Smart I/O Clock Synchronizer

Clock Synchronizer

0
To PRGIO
block o io_data_inl[i]
A o o ° or
chip_data_in([i]
clk —‘ clk —‘
clk_block

SYNC_CTL.IO_SYNC_EN([i]
Or
SYNC_CTL.CHIP_SYNC_EN([i]

6.5.2.3 LUT3

Each Smart 1/0O block contains eight lookup table (LUT3) components. The LUT3 component consists of a three-input LUT
and a flip-flop. Each LUT3 block takes three input signals and generates an output based on the configuration set in the
PRGIO_PRTx_LUT_CTLy register (y denotes the LUT3 number). For each LUT3, the configuration is determined by an 8-bit
lookup vector LUT[7:0] and a 2-bit opcode OPC[1:0] in the PRGIO_PRTx_LUT_CTLy register. The 8-bit vector is used as a
lookup table for the three input signals. The 2-bit opcode determines the usage of the flip-flop. The LUT3 configuration for dif-
ferent opcode is shown in Figure 6-6.

50 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

I/O System

PRGIO_PRTx_LUT_SELy registers select the three input signals (trO_in, trl_in and tr2_in) going into each LUT3. The input
can come from the following sources:

m Data unit output

Other LUT3 output signals (tr_out)
HSIOM output signals (chip_data[7:0])
GPIO input signals (io_data[7:0])

LUT_TRO_SEL[3:0] bits of the PRGIO_PRTx_LUT_SELy register selects the trO_in signal for the yth LUT3. Similarly,
LUT_TR1_SEL[3:0] bits and LUT_TR2_SEL[3:0] bits select the trl_in and tr2_in signals respectively. See Table 6-5 for

details.

Table 6-5. LUT3 Register Control

Register[BIT_POS]

Bit Name

Description

PRGIO_PRTx_LUT_CTLy[7:0]

LUT[7:0]

LUT configuration. Depending on the LUT opcode (LUT_OPC), the internal state,
and the LUT input signals trO_in, trl_in, and tr2_in, the LUT configuration is used

to determine the LUT output signal and the next sequential state.

PRGIO_PRTx_LUT_CTLy[9:8]

LUT_OPCIL:0]

LUT opcode specifies the LUT operation as illustrated in Figure 6-6.

PRGIO_PRTx_LUT_SELy|[3:0]

LUT_TRO_SEL[3:0]

LUT input signal “trO_in" source selection:

"0": Data unit output

" LUT 1 output

" LUT 2 output

" LUT 3 output

" LUT 4 output

" LUT 5 output

" LUT 6 output

7" LUT 7 output

": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7)
": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7)
": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7)
": chip_datal[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7)
":io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7)
":io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7)

" io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7)
"15" io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7)

SRCRECRENINC G, SR

[G G
B W NPRQ

PRGIO_PRTx_LUT_SELy[11:8]

LUT_TR1_SEL[3:0]

LUT input signal "trl_in" source selection:

"0": LUT 0 output

"1": LUT 1 output

"2": LUT 2 output

"3" LUT 3 output

"4": LUT 4 output

"5" LUT 5 output

"6": LUT 6 output

"7": LUT 7 output

"8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7)
"9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7)
"10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7)
"11": chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7)
"12":io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7)
"13":io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7)
"14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7)
"15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7)

PRGIO_PRTx_LUT_SELy[19:16]

LUT_TR2_SEL[3:0]

LUT input signal "tr2_in" source selection. Encoding is the same as for
LUT_TR1_SEL.

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

51

I/O System a CYPRES S

~ammp> EMBEDDED IN TOMORROW

Figure 6-6. Smart I/0O LUT3 Configuration

OPC[1:0]=0
tr0_in
trl_in LUT3 tr_out
tr2_in
8
LUT[7:0]
OPC[1:0] =1
tr0_in
tri_in LUT3 tr_out
tr2_in
clk_block .
LUT[7:0]
OPC[1:0] =2
tr0_in
trl_in LUT3 tr_out
tr2_in [
HB clk_block
LUT[7:0]
LUT[5] OPC[1:0] =3
tr2_in
trl_in set tr_out
Clr
Clk
trO_in
clk_block

6.5.2.4 Data Unit

Each Smart I/O block includes a data unit (DU) component. The data unit consists of a simple 8-bit datapath. It is capable of
performing simple increment, decrement, increment/decrement, shift, and AND/OR operations. The operation performed by
the DU is selected using a 4-bit opcode DU_OPC[3:0] bit field in the PRGIO_PRTx_DU_CTL register.

The data unit component supports up to three input trigger signals (trO_in, trl_in, tr2_in) similar to the LUT3 component.
These signals are used to initiate an operation defined by the DU opcode. In addition, the data unit also includes two 8-bit
input data (dataO_in[7:0] and datal_in[7:0]) that are used to initialize the 8-bit internal state (data[7:0]) or to provide a refer-
ence. The input to these 8-bit data can come from these sources:

m Constant ‘0x00’

m io_data_in[7:0]

m chip_data_in[7:0]

m DATA[7:0] bit field of PRGIO_PRTx_DATA register

52 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

I/O System

The trigger signals are selected using the DU_TRx_SEL[3:0] bit field of the PRGIO_PRTx_DU_SEL register. The
DUT_DATAx_SEL[1:0] bits of the PRGIO_PRTx_DU_SEL register selects the 8-bit input data source. The size of the DU
(number of bits used by the datapath) is defined by the DU_SIZE[2:0] bits of the PRGIO_PRTx_DU_CTL register. See
Table 6-6 for register control details.

Table 6-6. Data Unit Register Control

Register[BIT_POS]

Bit Name

Description

PRGIO_PRTx_DU_CTL[2:0]

DU_SIZE[2:0]

Size/width of the data unit (in bits) is DU_SIZE+1. For example, if DU_SIZE is 7,
the width is 8 bits.

PRGIO_PRTx_DU_CTL[11:8]

DU_OPC[3:0]

Data unit opcode specifies the data unit operation:
"1": INCR

"2": DECR

"3" INCR_WRAP

"4": DECR_WRAP

"5" INCR_DECR

"6": INCR_DECR_WRAP
"7": ROR

"8": SHR

"9": AND_OR

"10": SHR_MAJ3

"11": SHR_EQL
Otherwise: Undefined.

PRGIO_PRTx_DU_SEL[3:0]

DU_TRO_SEI[3:0]

Data unit input signal "trO_in" source selection:
"0": Constant '0'.

"1": Constant '1'.

"2": Data unit output.

"10-3": LUT 7 - O outputs.

Otherwise: Undefined.

PRGIO_PRTx_DU_SEL[11:8]

DU_TR1_SEI[3:0]

Data unit input signal "trl_in" source selection. Encoding same as DU_TRO_SEL

PRGIO_PRTx_DU_SEL[19:16]

DU_TR2_SEI[3:0]

Data unit input signal "tr2_in" source selection. Encoding same as DU_TRO_SEL

PRGIO_PRTx_DU_SEL[25:24]

DU_DATAO_SEL[1:0]

Data unit input data "data0_in" source selection:

: 0x00

: chip_data[7:0].

: io_data[7:0].

: PRGIO_PRTx_DATA.DATA[7:0] register field.

G NE QS

PRGIO_PRTx_DU_SEL[29:28]

DU_DATAL_SEL[1:0]

Data unit input data "datal_in" source selection. Encoding same as
DU_DATAO_SEL.

PRGIO_PRTx_DATA[7:0]

DATA[7:0]

Data unit input data source.

The data unit generates a single output trigger signal (“tr_out”). The internal state (du_data[7:0]) is captured in flip-flops and

requires clk_block.

The following pseudo code describes the various datapath operations supported by the DU opcode. Note that “Comb”
describes the combinatorial functionality — that is, functionalities that operate independent of previous output states. “Reg”
describes the registered functionality — that is, functionalities that operate on inputs and previous output states (registered

using flip-flops).

// The following is shared by all

mask = (2 ~ (DU_SIZE+1) - 1)
data_eql_datal_in = (data & mask) ==

data_eql_O
data_incr
data_decr
dataO_masked

(data & mask) ==
(data + 1) & mask;
(data - 1) & mask;
data_in0 & mask;

operations.

(datal_in & mask));
0):

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 53

o CYPRESS

I/O System ~mg> EMBEDDED IN TOMORROW

// INCR operation: increments data by 1 from an initial value (data0O) until it reaches a
// Ffinal value (datal).
Comb:tr_out = data_eql_datal_in;
Reg: data <= data;
if (tro_in) data <= dataO_masked; //trO_in is reload signal - loads masked dataO
// into data
else If (trl_in) data <= data_eql_datal_in ? data : data_incr; //increment data until
// it equals datal

// INCR_WRAP operation: operates similar to INCR but instead of stopping at datal, it wraps
// around to dataO.
Comb:tr_out = data_eql_datal_in;
Reg: data <= data;
if (tro_in) data <= dataO_masked;
else If (trl_in) data <= data_eql_datal_in ? dataO_masked : data_incr;

// DECR operation: decrements data from an initial value (data0O) until it reaches O.
Comb:tr_out = data_eql_O;
Reg: data <= data;

if (tro_in) data <= dataO_masked;

else if (trl_in) data <= data_eql_0O ? data : data_decr;

// DECR_WRAP operation: works similar to DECR. Instead of stopping at O, it wraps around to
// data0.
Comb:tr_out = data_eql_O;
Reg: data <= data;
if (tro_in) data <= dataO_masked;
else if (trl_in) data <= data_eql_O ? data0_masked: data_decr;

// INCR_DECR operation: combination of INCR and DECR. Depending on trigger signals it either
// starts incrementing or decrementing. Increment stops at datal and decrement stops at O.
Comb:tr_out = data_eql_datal_in | data_eql_O;
Reg: data <= data;
it (tro_in) data <= dataO_masked; // Increment operation takes precedence over
// decrement when both signal are available
else if (trl_in) data <= data_eql_datal_in ? data : data_incr;
else 1If (tr2_in) data <= data_eql_O0 ? data : data_decr;

// INCR_DECR_WRAP operation: same functionality as INCR_DECR with wrap around to dataO on
// touching the limits.
Comb:tr_out = data_eql_datal_in | data_eql_O;
Reg: data <= data;
if (tro_in) data <= dataO_masked;
else if (trl_in) data <= data_eql_datal_in ? dataO_masked : data_incr;
else If (tr2_in) data <= data_eql_0 ? dataO_masked : data_decr;

// ROR operation: rotates data right and LSB is sent out. The data for rotation is taken from
// dataO.

Comb:tr_out = data[0];

Reg: data <= data;

if (tro_in) data <= dataO_masked;
else if (trl_in) {
data <= {0, data[7:1]} & mask; //Shift right operation

data[du_size] <= data[0]; //Move the data[0] (LSB) to MSB
}

// SHR operation: performs shift register operation. Initial data (dataO) is shifted out and
// data on tr2_in is shifted in.

54 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

o CYPRESS

~mg> EMBEDDED IN TOMORROW 110 System

Comb:tr_out = data[0];
Reg: data <= data;

if (tro0_in) data <= dataO_masked;
else if (trl_in) {
data <= {0, data[7:1]} & mask; //Shift right operation

data[du_size] <= tr2_in; //tr2_in Shift in operation
}

// SHR_MAJ3 operation: performs the same functionality as SHR. Instead of sending out the
// shifted out value, it sends out a "1" if in the last three samples/shifted-out values
// (data[0]), the signal high in at least two samples. otherwise, sends a "0". This function
// sends out the majority of the last three samples.
Comb:tr_out = (data == 0x03)

| (data == 0x05)

| (data == 0x06)

| (data == 0x07);
Reg: data <= data;

if (tro_in) data <= dataO_masked;
else if (tri_in) {
data <= {0, data[7:1]} & mask;

data[du_size] <= tr2_in;

}

// SHR_EQL operation: performs the same operation as SHR. Instead of shift-out, the output is
// a comparison result (data0 == datal).

Comb:tr_out = data_eql_datal_in;

Reg: data <= data;

if (trO0_in) data <= dataO_masked;
else if (tri_in) {
data <= {0, data[7:1]} & mask;

data[du_size] <= tr2_in;

}

// AND_OR operation: ANDs datal and dataO along with mask; then, ORs all the bits of the
// ANDed output.
Comb:tr_out = | (data & datal_in & mask);
Reg: data <= data;
if (trO_in) data <= dataO_masked;

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 55

o CYPRESS

I/O System ~mg> EMBEDDED IN TOMORROW

6.5.3 Routing

The Smart I/0 block includes many switches that are used to route the signals in and out of the block and also between vari-
ous components present inside the block. The routing switches are handled through the PRTGIO_PRTx_LUT_SELy and
PRGIO_PRTx_DU_SEL registers. Refer to the Register TRM for details. The Smart I/O internal routing is shown in
Figure 6-7. In the figure, note that LUT7 to LUT4 operate on io_data/chip_data[7] to io_data/chip_data[4] whereas LUT3 to
LUTO operate on io_data/chip_data[3] to io_data/chip_data[0].

Figure 6-7. Smart I/0O Routing

Programmable 1/0 internal routing
rst_block_n+————
0x00 Clock and
Reset
PRGIO_PRTx_DATA.DATA[7:0] K block
chip_data[7:0]
io_data[7:0]
g <
I I
5 3 clk_prgio
Data Unit clk_sys
5 ;‘ i' é‘ clk_If
% 1 T T T Synhc io_data[7]
prgio_data[7] ‘ ‘ ‘ prgio_data[7]
chip_data[7] Sync chip_data[7]

Syhc io_datal6]
prgio_data[6] - - Y 'S0 S S SR S S S S i prgio_data[6]
chip_data[6] Sync chip_data[6]

Syhc io_data[5]
prgio_data[5] - : = S S S S S S S S 8 i prgio_data[s]
chip_data[5] Sync chip_data[5]

Sync io_data[4]
prgio_data[4] ‘ ‘ ‘ prgio_datal4]
chip_data[4] Sync I:mip_datam

svhc io_data[3]

1
prgio_data[3] 7] 'J"M f prgio_data(3]
chip_data[3] Sync chip_data[3]

{_Syhc io_data[2]
prgio_data[2] - - 09 i prgio_data[2]
chip_data[2] sT-c chip_data[2]

{_Sync io_data[1]
prgio_data[1] ‘ ‘ - ‘ prgio_data[1]
chip_data[1] Sync chip_data[1]

[svhe io_datal0]
prgio_data[0] —'?'Y prgio_data[0]
chip_data[0] { syne | l l %—»:hip_data[o]

F LUTO | | LUTL | | LUT2 | | LUT3 | | LUT4 | | LUT5 | | LUT6 | | LUT7 T okblock
‘== 3-bit wide data bus
© Programmable Switch (ONLY ONE of the switches along a
vertical line can be closed at a time)
® Closed switch connecting a bit of the 8-bit data bus

6.5.4 Operation

The Smart 1/0 block should be configured and operated as follows:

1. Before enabling the block, all the components should be configured and the routing should be selected, as explained in
“Block Components” on page 49.

2. In addition to configuring the components and routing, some block level settings need to be configured correctly for
desired operation.

a. Bypass control: The Smart 1/O path can be bypassed for a particular GPIO signal by setting the BYPASS]i] bit field in
the PRGIO_PRTx_CTL register. When bit 'i" is set in the BYPASS[7:0] bit field, the ith GPIO signal is bypassed to the
HSIOM signal path directly — Smart I/O logic will not be present in that signal path. This is useful when the Smart I/O
functionality is required only on select I/Os.

b. Pipelined trigger mode: The LUT3 input multiplexers and the LUT3 component itself do not include any combinatorial
loops. Similarly, the data unit also does not include any combinatorial loops. However, when one LUT3 interacts with
the other or to the data unit, inadvertent combinatorial loops are possible. To overcome this limitation, the
PIPELINE_EN bit field of the PRGIO_PRTx_CTL register is used. When set, all the outputs (LUT3 and data unit) are

56 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

o CYPRESS

~mg> EMBEDDED IN TOMORROW 110 System

registered (flopped) before branching out to other components. The output will be unflopped when the PIPELINE_EN
bit is cleared.

3. After the Smart I/O block is configured for the desired functionality, the block can be enabled by setting the ENABLED bit
field of the PRGIO_PRTx_CTL register. If disabled, the Smart I/O block is put in bypass mode, where the GPIO signals
are directly controlled by the HSIOM signals and vice-versa. The Smart I/O block must be configured; that is, all register
settings must be updated before enabling the block to prevent glitches during register updates.

Table 6-7. Smart I/0O Block Controls

Register [BIT_POS] Bit Name Description

Enable for pipeline register:
PRGIO_PRTx_CTL[25] |PIPELINE_EN '0": Disabled (register is bypassed).
'1": Enabled

Enable Smart I/0. Should only be set to '1' when the Smart I/O is completely configured:

'0": Disabled (signals are bypassed; behavior as if BYPASS[7:0] is OxFF). When disabled, the
block (data unit and LUTS) reset is activated.

If the block is disabled:

- The PIPELINE_EN register field should be set to '1', to ensure low power consumption.

- The CLOCK_SRC register field should be set to 20 to 30 (clock is constant '0'), to ensure
low power consumption.

'1": Enabled. When enabled, it takes three "clk_block" clock cycles until the block reset is de-

activated and the block becomes fully functional. This action ensures that the 1/O pins' input
synchronizer states are flushed when the block is fully functional.

PRGIO_PRTx_CTL[31] |ENABLED

Bypass of the Smart I/0, one bit for each I/O pin: BYPASS]i] is for I/0 pin i. When ENABLED
is '1', this field is used. When ENABLED is '0', this field is not used and Smart I/O is always

PRGIO_PRTx_CTL[7:0] |BYPASS[7:0] bypassed.
'0": No bypass (Smart I/O is present in the signal path)

'1": Bypass (Smart I/O is absent in the signal path)

6.6 I/O State on Power Up

During power up all the GPIOs are in high-impedance analog state and the input buffers are disabled. During run time, GPIOs
can be configured by writing to the associated registers. Note that the pins supporting debug access port (DAP) connections
(SWD lines) are always enabled as SWD lines during power up. However, the DAP connection can be disabled or reconfig-
ured for general-purpose use through HSIOM. However, this reconfiguration takes place only after the device boots and start
executing code.

6.7 Behavior in Low-Power Modes
shows the status of GPIOs in low-power modes.

Table 6-8. GPIO in Low-Power Modes

Low-Power Mode Status

B GPIOs are active and can be driven by peripherals such as CapSense, CTBm, TCPWM, SCBs, and low-power
comparators, which can work in sleep mode.

Sleep B Input buffers are active; thus an interrupt on any I/O can be used to wake up the CPU.

B AMUXBUS connections are available.

B GPIO output pin states are latched and remain in the frozen state, except the I2C and SPI pins. SCB (I2C and
SPI) block can work in the deep-sleep mode and can wake up the CPU on address match or SPI slave select
event. The low-power comparator can receive signals from its dedicated pins and can wake up the CPU. CTBm

Deep-Sleep is also functional in this mode with dedicated pins.

B Input buffers are also active in this mode; pin interrupts are functional.

B AMUXBUS connections are not available.

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 57

I/O System

6.8 Interrupt

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

In the PSoC 4 device, all the port pins have the capability to generate interrupts. As shown in Figure 6-2, the pin signal is
routed to the interrupt controller through the GPIO Edge Detect block.

Figure 6-8 shows the GPIO Edge Detect block architecture.

Figure 6-8. GPIO Edge Detect Block Architecture

‘ 50 ns Glitch Filter }—»‘ Edge Detector

Pin0 T

Pin 1 Edge Detector '—
Pin 2

Pin 3

An edge detector is present at each pin. It is capable of
detecting rising edge, falling edge, and both edges without
reconfiguration. The edge detector is configured by writing
into the EDGE_SEL bits of the Port Interrupt Configuration
register, GPIO_PRTx_INTR_CFG, as shown in Table 6-9.

Table 6-9. Edge Detector Configuration

Edge Detector

Edge Detector
Edge Detector

Pin 4 Edge Detector '—»
Pin 5 Edge Detector }J
Pin 6 Edge Detector

Pin 7 Edge Detector '—

EDGE_SEL Configuration
00 Interrupt is disabled
01 Interrupt on Rising Edge
10 Interrupt on Falling Edge
11 Interrupt on Both Edges

Besides the pins, edge detector is also present at the glitch
filter output. This filter can be used on one of the pins of a
port. The pin is selected by writing to the FLT_SEL field of
the GPIO_PRTx_INTR_CFG register as shown in
Table 6-10.

Table 6-10. Glitch filter Input Selection

Interrupt
Signal

register, GPIO_PRTx_INTR. This register not only includes
the information on which pin triggered the interrupt, it also
includes the pin status; it allows the CPU to read both infor-
mation in a single read operation. This register has one
more important use — to clear the interrupt. Writing ‘1’ to the
corresponding status bit clears the pin interrupt. It is impor-
tant to clear the interrupt status bit; otherwise, the interrupt
will occur repeatedly for a single trigger or respond only
once for multiple triggers, which is explained later in this
section. Also, note that when the Port Interrupt Control Sta-
tus register is read when an interrupt is occurring on the cor-
responding port, it can result in the interrupt not being
properly detected. Therefore, when using GPIO interrupts, it
is recommended to read the status register only inside the
corresponding interrupt service routine and not in any other
part of the code. Table 6-11 shows the Port Interrupt Status
register bit fields.

Table 6-11. Port Interrupt Status Register

GPIO_PRTx_INTR Description

0000b to 0111b Interrupt status on pin O to pin 7. Writing ‘1

The edge detector outputs of a port are ORed together and
then routed to the interrupt controller (NVIC in the CPU sub-
system). Thus, there is only one interrupt vector per port. On
a pin interrupt, it is required to know which pin caused an
interrupt. This is done by reading the Port Interrupt Status

FLT_SEL Selected Pin to the corresponding bit clears the interrupt

000 Pin 0 is selected 1000b Interrupt status from the glitch filter

001 Pin 1 is selected 10000b to 10111 Pin 0 to Pin 7 status

010 Pin 2 is selected 11000b Glitch filter output status

011 Pin 3 is selected

100 Pin 4 is selected The edge dgtector block output is routed to the Interrgpt

To1 Pin 5 is selected S_ource Mult_lplexer shown in l_:lgure 5-3 on page 34, which
gives an option of Level and Rising Edge detect. If the Level

110 Pin 6 is selected option is selected, an interrupt is triggered repeatedly as

11 Pin 7 is selected long as the Port Interrupt Status register bit is set. If the Ris-

ing Edge detect option is selected, an interrupt is triggered
only once if the Port Interrupt Status register is not cleared.
Thus, it is important to clear the interrupt status bit if the
Edge Detect block is used.

58 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

6.9 Peripheral Connections

6.9.1 Firmware Controlled GPIO

See to know the HSIOM settings for a firmware controlled
GPIO. GPIO_PRTx_DR is the data register used to read
and write the output data for the GPIOs. A write operation to
this register changes the GPIO output to the written value.
Note that a read operation reflects the output data written to
this register and not the current state of the GPIOs. Using
this register, read-modify-write sequences can be safely
performed on a port that has both input and output GPIOs.

In addition to the data register, three other registers —
GPIO_PRTx_DR_SET, GPIO_PRTx_DR_CLR, and
GPIO_PRTx_INV — are provided to set, clear, and invert the
output data respectively of a specific pin in a port without
affecting other pins. Writing ‘1’ into these registers will set,
clear, or invert; writing ‘0" will have no affect on the pin sta-
tus.

GPIO_PRTx_PS is the I/0O pad register that provides the
state of the GPIOs when read. Writes to this register have
no effect.

6.9.2 Analog I/0

Analog resources, such as (LPCOMPSs), which require low-
impedance routing paths have dedicated pins. Dedicated
analog pins provide direct connections to specific analog
blocks. They help improve performanceand should be given

Table 6-12. CapSense Settings

I/O System

priority over other pins when using these analog resources.
See the device datasheet for details on these dedicated
pins.

To configure a GPIO as a dedicated analog /O, it should be
configured in high-impedance analog mode (see Table 6-2)
and the respective connection should be enabled in the spe-
cific analog resource. This can be done via registers associ-
ated with the respective analog resources.

To configure a GPIO as an analog pin connecting to AMUX-
BUS, it should be configured in high-impedance analog
mode and then routed to AMUXBUS using the
HSIOM_PORT_SELXx register.

6.9.3 LCD Drive

All GPIOs have the capability of driving an LCD common or
segment. HSIOM_PORT_SELX registers are used to select
the pins for LCD drive. See the LCD Direct Drive chapter on
page 187 for details.

6.9.4

The pins that support CSD can be configured as CapSense
widgets such as buttons, slider elements, touchpad ele-
ments, or proximity sensors. CapSense also requires exter-
nal tank capacitors and shield lines. Table 6-12shows the
GPIO and HSIOM settings required for CapSense. See the
CapSense chapter on page 167 for more information.

CapSense

CapSense Pin

GPIO Drive Mode
(GPIO_PRTx_PC)

Digital Input Buffer Setting

(GPIO_PRTx_PC2) HSIOM Setting

Sensor

High-Impedance Analog

Disable Buffer CSD_SENSE

Shield

High-Impedance Analog

Disable Buffer CSD_SHIELD

CMOD (normal operation)

High-Impedance Analog

Disable Buffer AMUXBUS A or CSD_COMP

CMOD (GPIO precharge, only available in select
GPIO)

High-Impedance Analog

Disable Buffer AMUXBUS B or CSD_COMP

CSH TANK (GPIO precharge, only available in
select GPIO)

High-Impedance Analog

Disable Buffer AMUXBUS B or CSD_COMP

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 59

o CYPRESS

I/O System ~mg> EMBEDDED IN TOMORROW

6.9.5 Serial Communication Block (SCB)

SCB, which can be configured as UART, 12C, and SPI, has dedicated connections to the pin. See the device datasheet for
details on these dedicated pins. When the UART and SPI mode is used, the SCB controls the digital output buffer drive mode
for the input pin to keep the pin in the high-impedance state. That is, the SCB block disables the output buffer at the UART Rx
pin and MISO pin when configured as SPI master, and MOSI and select line when configured as SPI slave. This functionality
overrides the drive mode settings, which is done using the GPIO_PRTx_PC register.

6.9.6 Timer, Counter, and Pulse Width Modulator (TCPWM) Block

TCPWM has dedicated connections to the pin. See the device datasheet for details on these dedicated pins. Note that when
the TCPWM block inputs such as start and stop are taken from the pins, the drive mode can be only high-z digital because the
TCPWM block disables the output buffer at the input pins.

6.10 Registers

Table 6-13. 1/O Registers

Name Description
GPIO_PRTx_DR Port Output Data Register
GPIO_PRTx_DR_SET Port Output Data Set Register
GPIO_PRTx_DR_CLR Port Output Data Clear Register
GPIO_PRTx_DR_INV Port Output Data Inverting Register
GPIO_PRTx_PS Port Pin State Register - Reads the logical pin state of /O
GPIO_PRTx_PC Port Configuration Register - Configures the output drive mode, input threshold, and slew rate
GPIO_PRTx_PC2 Port Secondary Configuration Register - Configures the input buffer of I/O pin
GPIO_PRTx_INTR_CFG Port Interrupt Configuration Register
GPIO_PRTx_INTR Port Interrupt Status Register
HSIOM_PORT_SELx HSIOM Port Selection Register
PRGIO_PRTx_CTL Smart I/O port control register
PRGIO_PRTx_SYNC_CTL Smart I/O Synchronization control register
PRGIO_PRTx_LUT_SELy Smart 1/0 y LUT component input selection register
PRGIO_PRTx_LUT_CTLy Smart 1/0 y LUT component control register
PRGIO_PRTx_DU_SEL Smart I/O data unit input selection register
PRGIO_PRTx_DU_CTL Smart I/O data unit control register
PRGIO_PRTx_DATA Smart I/O data unit input data source register

Note The 'x' in the GPIO register name denotes the port number. For example, GPIO_PTR1_DR is the Port 1 output data
register. The ‘X’ in the Smart 1/O register name denotes the Smart I/O port number. The Smart I/O port number and the actual
port number may vary. See 6.5 Smart I/O on page 48 for details.

60 PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B

/. Clocking System

&= CYPRESS

s EMBEDDED IN TOMORROW"

The PSoC® 4 clock system includes these clock resources:

Two internal clock sources:

0 24-48 MHz internal main oscillator (IMO) with £2 percent accuracy across all frequencies with trim
o 40-kHz internal low-speed oscillator (ILO) with £60 percent accuracy with trim (can be calibrated using the IMO)
Two external clock sources:

0 External clock (EXTCLK) generated using a signal from an 1/O pin

o External 32-kHz watch crystal oscillator (WCO)

High-frequency clock (HFCLK) of up to 48 MHz, selected from IMO or external clock

Low-frequency clock (LFCLK) sourced by ILO

Dedicated prescaler for system clock (SYSCLK) of up to 48 MHz sourced by HFCLK

Six 16-bit peripheral clock dividers

Two fractional dividers for accurate clock generation

Eleven digital and analog peripheral clocks

7.1 Block Diagram

Figure 7-1 gives a generic view of the clocking system in PSoC 4 devices.

PSoC 4000S Family PSoC 4 Architecture TRM, Document No. 002-10129 Rev. *B 61

Clocking System

o CYPRESS

~ammp> EMBEDDED IN TOMORROW

Figure 7-1. Clocking System Block Diagram

EXTCLK
HFCLK Select
M
IMO HFCLK
y Pre-divider
(248
DPLL
TRIM

ILO

» HFCLK
m e L sYsOIK
Peripheral
Dividers
| Dividero N
| 9 > | PERO_CLK
. _; o
° : 4
L]
| Dividers . .
"l (9 ,
.
L]
Fractional .
| Divider 0 . *
(165) .
: °
Fractionl > ’
> Divider 1 o |y
et > PERI0 CLK

The four clock sources in the device are IMO, EXTCLK,
WCO, and ILO, as shown in Figure 7-1. The HFCLK mux
selects the HFCLK source from the EXTCLK or the IMO.
The HFCLK frequency can be a maximum of 48 MHz.

7.2 Clock Sources

7.2.1

The internal main oscillator (IMO) is an accurate, high-speed