Test Procedure for the CS51411

02/7/2005

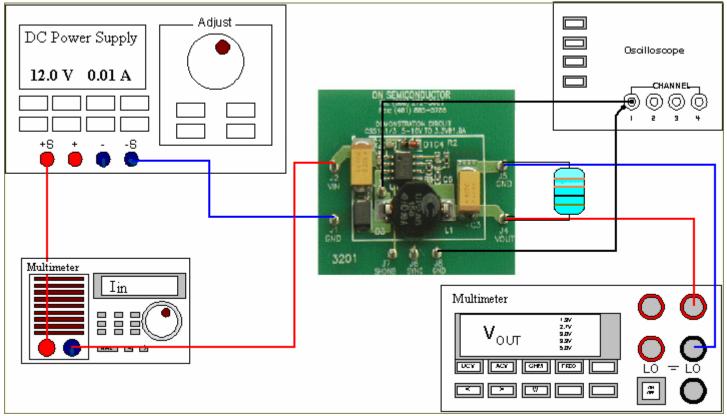
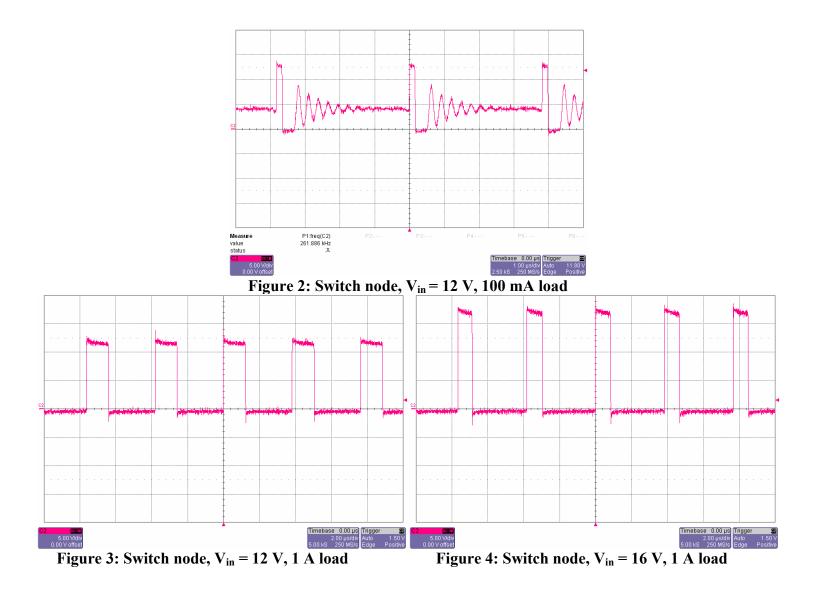


Figure 1: Test Setup

DC Power Su	pply	Two Multimeters	Oscilloscope
100 mA load (33 Ω electronic loa		load (3.3 Ω resistor or electronic load)	CS51411 demo board

*Note: Resistor loads heat up quickly at higher input voltages.

Test Procedure:


Equipment set up (see Figure 1):

- 1. Connect DC power supply to positive V_{in} (J2) and GND (J1).
- 2. Connect multimeter to measure I_{in}.
- 3. Connect another multimeter across J4 (+) and GND (J5) to measure V_{out}.

Test procedure:

- 4. Set current limit low on power supply and slowly increase V_{in} to 6 V.
- 5. At this point the board should be switching. Check the switch node (J3) with the Oscilloscope.
- 6. Check 0 mA \leq I_{IN} \leq 50 mA.
- 7. Increase $V_{in} = 12$ V. V_{out} should be around 3.8 V.

- 8. Connect a 100 mA load (33 Ω resistor) across J4 and J5.
- 9. Check $V_{out} = 3.3$ V. Check switch node (Figure 2). Frequency should be around 260 kHz.
- 10. Connect a 1 A load (3.3 Ω resistor) across J4 and J5.
- 11. Check V_{out} = 3.3 V. Check switch node (Figure 3). Frequency should be around 260 kHz.
- 12. Note I_{in}.
- 13. Short the output. Iin should be between 0 and Iin with 1 A load.
- 14. Increase V_{in} = 16 V.
- 15. V_{out} = 3.3 V. Note improved switch node duty cycle (Figure 4). Frequency should remain around 260 kHz.
- 16. Short the shut down pin, SHDNB (J7). Verify the board turns off (J3).

