
VS-40L15CTSPbF, VS-40L15CT-1PbF

Vishay Semiconductors

High Performance Schottky Rectifier, 2 x 20 A

PRODUCT SUMMARY					
I _{F(AV)} 2 x 20 A					
V _R	15 V				
V _F at I _F	see datasheet				
I _{RM} max.	600 mA at 100 °C				
T _J max.	125 °C				
E _{AS}	10 mJ				
Package	TO-263AB (D ² PAK), TO-262AA				
Diode variation	Common cathode				

FEATURES

- 125 °C T_J operation ($V_R < 5 V$)
- Center tap module
- Optimized for OR-ing applications
- Ultralow forward voltage drop
- High frequency operation

- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Guard ring for enhanced ruggedness and long term reliability
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- AEC-Q101 qualified
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

The center tap Schottky rectifier module has been optimized for ultralow forward voltage drop specifically for the OR-ing of parallel power supplies. The proprietary barrier technology allows for reliable operation up to 125 °C junction temperature. Typical applications are in parallel switching power supplies, converters, reverse battery protection, and redundant power subsystems.

MAJOR RATINGS AND CHARACTERISTICS								
SYMBOL CHARACTERISTICS VALUES UNITS								
I _{F(AV)}	Rectangular waveform	40	А					
V _{RRM}		15	V					
I _{FSM}	t _p = 5 μs sine	700	А					
V _F	19 A _{pk} , T _J = 125 °C (per leg, typical)	0.25	V					
TJ		-55 to +125	°C					

VOLTAGE RATINGS							
PARAMETER	VS-40L15CTSPbF VS-40L15CT-1PbF	UNITS					
Maximum DC reverse voltage	V _R	T.I = 100 °C	15	V			
Maximum working peak reverse voltage	V _{RWM}	1j = 100 C	15	V			

ABSOLUTE MAXIMUM RATINGS								
PARAMETER	SYMBOL	TEST COND	ITIONS	VALUES	UNITS			
Maximum average forward per leg	1	50.0% duty avala at $T_{-} = 95.0\%$	actongular waveform	20				
current, see fig. 5 per device	I _{F(AV)}	50 % duty cycle at T_C = 85 °C, rectangular waveform		40				
Maximum peak one cycle non-repetitive		5 µs sine or 3 µs rect. pulse	Following any rated load	700	A			
surge current per leg, see fig. 7	IFSM	10 ms sine or 6 ms rect. pulse	condition and with rated V _{RRM} applied	330				
Non-repetitive avalanche energy per leg	E _{AS}	T _J = 25 °C, I _{AS} = 2 A, L = 6 mH		10	mJ			
Repetitive avalanche current per leg	I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T _J maximum V _A = 1.5 x V _R typical		2	А			

Revision: 15-Aug-15

Document Number: 94217

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

1

ELEC	TRICAL	SPECIF	ICATIONS

PARAMETER	SYMBOL	TEST CONDITIONS		TYP.	MAX.	UNITS		
		19 A	— T _{.1} = 25 °C	-	0.41			
Maximum forward voltage drop per leg See fig. 1	V _{FM} ⁽¹⁾	40 A	1 = 23 0	-	0.52	v		
	VFM (**	19 A	T _{.1} = 125 °C	0.25	0.33	v		
		40 A	1j = 125 C	0.37	0.50			
Reverse leakage current per leg	I _{RM} ⁽¹⁾	T _J = 25 °C	V _R = Rated V _R	-	10	A		
See fig. 2		T _J = 100 °C		-	600	mA		
Threshold voltage	V _{F(TO)}	T _{.1} = T _{.1} maximum		0.1	82	V		
Forward slope resistance	r _t	$I_{\rm J} = I_{\rm J}$ maximum		7	.6	mΩ		
Maximum junction capacitance per leg	CT	$V_{R} = 5 V_{DC}$ (test signal ra	V_R = 5 V_{DC} (test signal range 100 kHz to 1 MHz), 25 °C		2000	pF		
Typical series inductance per leg	L _S	Measured lead to lead 5 mm from package body		8	-	nH		
Maximum voltage rate of change	dV/dt	Rated V _R		10	000	V/µs		

Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS							
PARAMETER		SYMBOL	SYMBOL TEST CONDITIONS		UNITS		
Maximum junction tempera	ture range	TJ		-55 to +125	°C		
Maximum storage temperat	ture range	T _{Stg}		-55 to +150	C		
Maximum thermal resistanc junction to case per leg	е,	R _{thJC}	DC operation See fig. 4	1.5			
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased 0.5		°C/W		
Maximum thermal resistance	Maximum thermal resistance, junction to ambient		DC operation	40			
Annewimete weight				2	g		
Approximate weight				0.07	oz.		
Mounting torque	minimum		Non-lubricated threads	6 (5)	kgf ⋅ cm		
Mounting torque	maximum		NOI-IUDIICALEU LITEAUS	12 (10)	(lbf · in)		
Marking davias			Case style TO-263AB (D ² PAK)	40L1	5CTS		
Marking device			Case style TO-262AA	40L15	5CT-1		

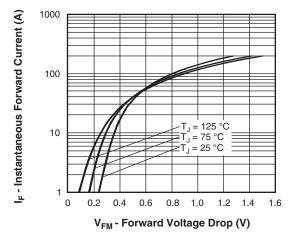


Fig. 1 - Maximum Forward Voltage Drop Characteristics

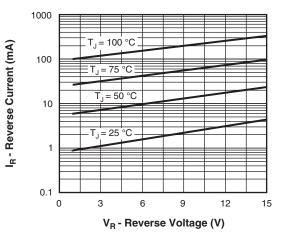


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

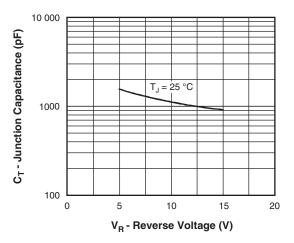
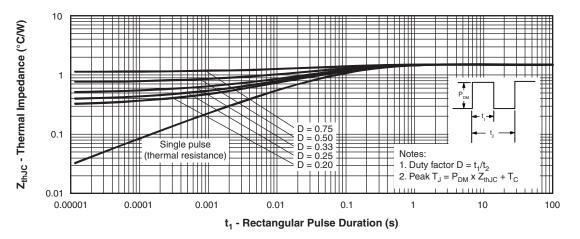
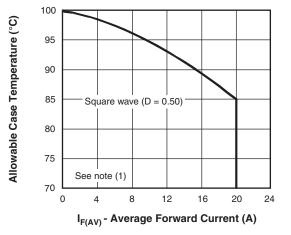
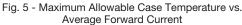


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage




Fig. 4 - Maximum Thermal Impedance ZthJC Characteristics


 Revision: 15-Aug-15
 3
 Document Number: 94217

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

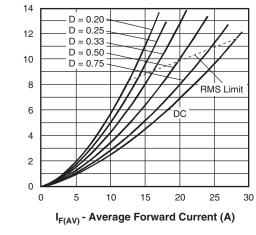
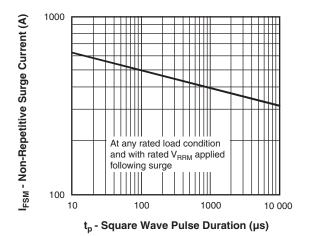



Fig. 6 - Forward Power Loss Characteristics

Average Power Loss (W)

Fig. 7 - Maximum Non-Repetitive Surge Current

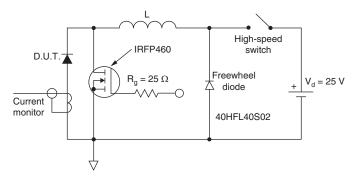


Fig. 8 - Unclamped Inductive Test Circuit

Note

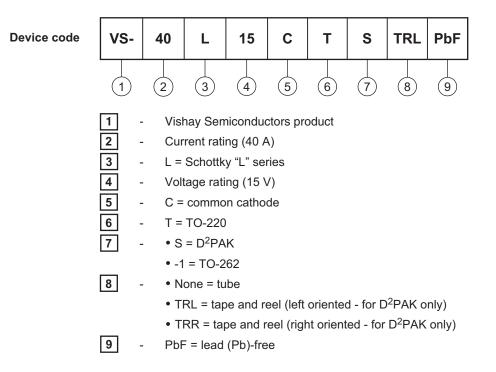
⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;

 $\begin{array}{l} \mathsf{Pd} = \mathsf{Forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \times \mathsf{V}_{\mathsf{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see} \ \mathsf{fig.} \ \mathsf{6}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{Inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \times \mathsf{I}_{\mathsf{R}} \ (\mathsf{1} - \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{80} \ \% \ \mathsf{rated} \ \mathsf{V}_{\mathsf{R}} \end{array}$

Revision: 15-Aug-15

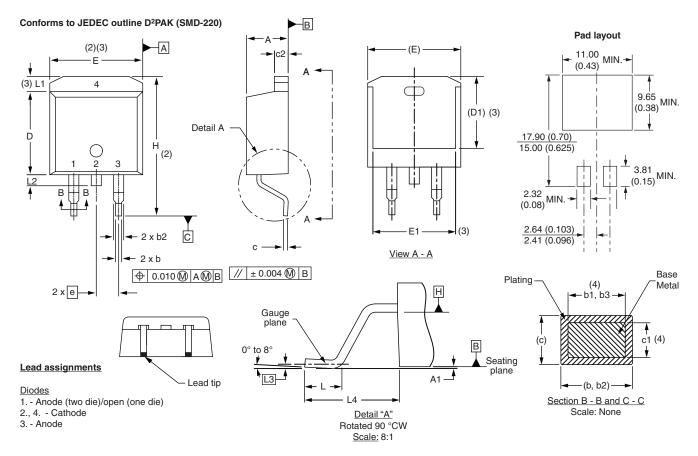
4

Document Number: 94217


For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

VS-40L15CTSPbF, VS-40L15CT-1PbF

Vishay Semiconductors


ORDERING INFORMATION TABLE

ORDERING INFORMATION (Example)								
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION					
VS-40L15CTSPbF	50	1000	Antistatic plastic tubes					
VS-40L15CTSTRRPbF	800	800	13" diameter plastic tape and reel					
VS-40L15CTSTRLPbF	800	800	13" diameter plastic tape and reel					
VS-40L15CT-1PbF	50	1000	Antistatic plastic tubes					

LINKS TO RELATED DOCUMENTS						
Dimensions	TO-263AB (D ² PAK)	www.vishay.com/doc?95046				
Dimensions	TO-262AA	www.vishay.com/doc?95419				
Part marking information		www.vishay.com/doc?95008				
Packaging information		www.vishay.com/doc?95032				

D²PAK, TO-262

DIMENSIONS - D²PAK in millimeters and inches

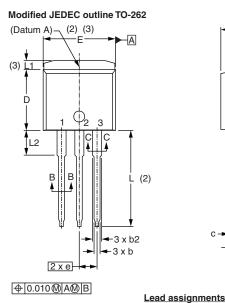
SHA

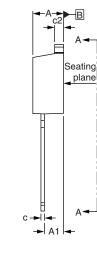
	SYMBOL	MILLIN	IETERS	INC	HES	NOTES
		MIN.	MAX.	MIN.	MAX.	NOTES
	А	4.06	4.83	0.160	0.190	
	A1	0.00	0.254	0.000	0.010	
	b	0.51	0.99	0.020	0.039	
	b1	0.51	0.89	0.020	0.035	4
	b2	1.14	1.78	0.045	0.070	
	b3	1.14	1.73	0.045	0.068	4
	С	0.38	0.74	0.015	0.029	
	c1	0.38	0.58	0.015	0.023	4
	c2	1.14	1.65	0.045	0.065	
	D	8.51	9.65	0.335	0.380	2

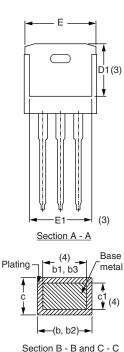
- ⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5 M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- ⁽³⁾ Thermal pad contour optional within dimension E, L1, D1 and E1
- ⁽⁴⁾ Dimension b1 and c1 apply to base metal only
- ⁽⁵⁾ Datum A and B to be determined at datum plane H
- ⁽⁶⁾ Controlling dimension: inch

SYMBOL	MILLIM	IETERS	INC	HES	NOTES
STMBOL	MIN.	MAX.	MIN.	MAX.	NULES
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
е	2.54 BSC		0.100	BSC	
Н	14.61	15.88	0.575	0.625	
L	1.78	2.79	0.070	0.110	
L1	-	1.65	-	0.066	3
L2	1.27	1.78	0.050	0.070	
L3	0.25 BSC		0.010	BSC	
L4	4.78	5.28	0.188	0.208	

(7) Outline conforms to JEDEC outline TO-263AB


Outline Dimensions


Vishay Semiconductors


D²PAK, TO-262

DIMENSIONS - TO-262 in millimeters and inches

Section B - B and C - C

(6) Outline conform to JEDEC TO-262 except A1 (maximum), b

(minimum) and D1 (minimum) where dimensions derived the

Lead tip Scale: None MILLIMETERS INCHES SYMBOL NOTES MIN. MAX. MIN. MAX. 4.06 4.83 0.160 0.190 А A1 2.03 3.02 0.080 0.119 b 0.51 0.99 0.020 0.039 0.51 0.89 0.020 0.035 4 b1 h2 1.14 1.78 0.045 0.070 b3 1.14 1.73 0.045 0.068 4 0.38 0.74 0.015 0.029 С 0.38 0.58 0.015 0.023 4 c1 1.14 0.045 0.065 c2 1.65 D 8.51 9.65 0.335 0.380 2 0.270 D1 6.86 8.00 0.315 3 Е 9.65 10.67 0.380 0.420 2, 3 E1 7.90 8.80 0.311 0.346 3 е 2.54 BSC 0.100 BSC L 13.46 14.10 0.530 0.555 L1 1.65 0.065 _ 3 L2 3.56 3.71 0.140 0.146

1. - Anode (two die)/open (one die)

Diodes

3. - Anode

2., 4. - Cathode

Notes

- ⁽¹⁾ Dimensioning and tolerancing as per ASME Y14.5M-1994
- ⁽²⁾ Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- ⁽³⁾ Thermal pad contour optional within dimension E, L1, D1 and E1

⁽⁴⁾ Dimension b1 and c1 apply to base metal only

⁽⁵⁾ Controlling dimension: inches

actual package outline

www.vishay.com

For technical questions within your region, please contact one of the following: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com Document Number: 95014 Revision: 31-Mar-09

2

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.